1
|
Anyaegbu CC, Mao Y, McGonigle T, Raja S, Clarke T, Black AMB, Solomon T, Fuller K, Fitzgerald M. Simultaneous flow cytometric characterization of multiple cell types and metabolic states in the rat brain after repeated mild traumatic brain injury. J Neurosci Methods 2021; 359:109223. [PMID: 34004202 DOI: 10.1016/j.jneumeth.2021.109223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cellular responses at the sub-acute phase of mild traumatic brain injury (mTBI), and their contribution to ongoing damage, are unclear, complex and require simultaneous assessment of multiple cells to elucidate. NEW METHOD An 11-colour flow cytometry method for analysing brain cells was evaluated in a weight-drop rat model of repeated mTBI. Animals received sham, one, two or three mTBI delivered at 24 h intervals (n = 6/group). Cerebrum homogenates were prepared 11 days after first mTBI, in two cohorts of n = 3/group to enable same-day staining of fresh tissue. Percentages of neurons, astrocytes, microglia, mature oligodendrocytes and NeuN + CC1+ cells, neutrophils, macrophages and non-myeloid leukocytes, and their immunoreactivity for cell damage indicators (inducible nitric oxide synthase; iNOS, proliferating cell nuclear antigen; PCNA, 8-Oxo-2'-deoxyguanosine; 8OHDG and 4-hydroxynonenal; HNE), were assessed. RESULTS Median fluorescence intensity (MFI) of iNOS in activated microglia increased following two, but not one or three, mTBI (p = 0.04). However, there were differences between processing cohorts in terms of percentages and MFI of some PCNA+, iNOS+, 8OHDG + and HNE + cell populations. COMPARISON WITH EXISTING METHODS Previous applications of flow cytometry for rat brain analysis were typically limited to three or four markers. This method uses 11 markers to identify nine cell populations and evaluate their immunoreactivity to four metabolic indicators of cell damage. CONCLUSIONS Flow cytometry can be useful for discerning injury-related changes in multiple rat brain cells. However, markers sensitive to subtle changes in experimental conditions must be identified in pilot experiments and subsequently analysed in the same tissue-processing cohort.
Collapse
Affiliation(s)
- Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia.
| | - Yilin Mao
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Terry McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Sushmitha Raja
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Thomas Clarke
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Anna M B Black
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Tanya Solomon
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Kathy Fuller
- Division of Cancer Biology, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands 6009 Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands 6009 Western Australia, Australia
| |
Collapse
|
2
|
Smith PF, Truchet B, Chaillan FA, Zheng Y, Besnard S. Vestibular Modulation of Long-Term Potentiation and NMDA Receptor Expression in the Hippocampus. Front Mol Neurosci 2020; 13:140. [PMID: 32848601 PMCID: PMC7431471 DOI: 10.3389/fnmol.2020.00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
Loss of vestibular function is known to cause spatial memory deficits and hippocampal dysfunction, in terms of impaired place cell firing and abnormal theta rhythm. Based on these results, it has been of interest to determine whether vestibular loss also affects the development and maintenance of long-term potentiation (LTP) in the hippocampus. This article summarizes and critically reviews the studies of hippocampal LTP following a vestibular loss and its relationship to NMDA receptor expression, that have been published to date. Although the available in vitro studies indicate that unilateral vestibular loss (UVL) results in reduced hippocampal field potentials in CA1 and the dentate gyrus (DG), the in vivo studies involving bilateral vestibular loss (BVL) do not. This may be due to the differences between UVL and BVL or it could be a result of in vitro/in vivo differences. One in vitro study reported a decrease in LTP in hippocampal slices following UVL; however, the two available in vivo studies have reported different results: either no effect or an increase in EPSP/Population Spike (ES) potentiation. This discrepancy may be due to the different high-frequency stimulation (HFS) paradigms used to induce LTP. The increased ES potentiation following BVL may be related to an increase in synaptic NMDA receptors, possibly increasing the flow of vestibular input coming into CA1, with a loss of selectivity. This might cause increased excitability and synaptic noise, which might lead to a degradation of spatial learning and memory.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, >New Zealand
| | - Bruno Truchet
- Aix Marseille University, CNRS, LNC UMR 7291, FR 3C FR 3512, Marseille, France
| | - Franck A. Chaillan
- Aix Marseille University, CNRS, LNC UMR 7291, FR 3C FR 3512, Marseille, France
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, >New Zealand
| | | |
Collapse
|
3
|
Drissi I, Deschamps C, Fouquet G, Alary R, Peineau S, Gosset P, Sueur H, Marcq I, Debuysscher V, Naassila M, Vilpoux C, Pierrefiche O. Memory and plasticity impairment after binge drinking in adolescent rat hippocampus: GluN2A/GluN2B NMDA receptor subunits imbalance through HDAC2. Addict Biol 2020; 25:e12760. [PMID: 31056842 DOI: 10.1111/adb.12760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge-like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long-term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N-methyl-d-aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours. Here, we tested the hypothesis of EtOH-induced epigenetic alterations leading to modulation of GluN2B and GluN2A NMDA receptor subunits. Forty-two days old rats were treated with EtOH or the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB, 600 mg/kg, ip) injected alone or 30 minutes before EtOH. After 48 hours, learning was tested with novel object recognition while synaptic plasticity and the role of GluN2A and GluN2B subunits in NMDA-fEPSP were measured in CA1 field of hippocampus slices. LTD and memory were impaired 48 hours after EtOH and NMDA-fEPSP analysis unraveled changes in the GluN2A/GluN2B balance. These results were associated with an increase in histone deacetylase (HDAC) activity and HDAC2 mRNA and protein while Ac-H4K12 labelling was decreased. EtOH increases expression of HDAC2 and mRNA level for GluN2B subunit (but not GluN2A), while HDAC2 modulates the promoter of the gene encoding GluN2B. Interestingly, NaB pretreatment prevented all the cellular and memory-impairing effects of EtOH. In conclusion, the memory-impairing effects of two binge-like EtOH exposure involve NMDA receptor-dependent LTD deficits due to a GluN2A/GluN2B imbalance resulting from changes in GluN2B expression induced by HDAC2.
Collapse
Affiliation(s)
- Ichrak Drissi
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Chloé Deschamps
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Grégory Fouquet
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Rachel Alary
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Stéphane Peineau
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Philippe Gosset
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Harold Sueur
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Ingrid Marcq
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Véronique Debuysscher
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Mickael Naassila
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Catherine Vilpoux
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| | - Olivier Pierrefiche
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS) Amiens Cedex 1 France
| |
Collapse
|
4
|
Ritzel RM, Li Y, He J, Khan N, Doran SJ, Faden AI, Wu J. Sustained neuronal and microglial alterations are associated with diverse neurobehavioral dysfunction long after experimental brain injury. Neurobiol Dis 2019; 136:104713. [PMID: 31843705 PMCID: PMC7155942 DOI: 10.1016/j.nbd.2019.104713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) can cause progressive neurodegeneration, sustained neuroinflammation and chronic neurological dysfunction. Few experimental studies have explored the long-term neurobehavioral and functional cellular changes beyond several months. The present study examined the effects of a single moderate-level TBI on functional outcome 8 months after injury. Male C57BL/6 mice were subjected to controlled cortical impact injury and followed for changes in motor performance, learning and memory, as well as depressive-like and social behavior. We also used a novel flow cytometry approach to assess cellular functions in freshly isolated neurons and microglia from the injured tissue. There were marked and diverse, sustained neurobehavioral changes in injured mice. Compared to sham controls, chronic TBI mice showed long-term deficits in gait dynamics, nest building, spatial working memory and recognition memory. The tail suspension, forced swim, and sucrose consumption tests showed a marked depressive-like phenotype that was associated with impaired sociability. At the cellular level, there were lower numbers of Thy1+Tuj1+ neurons and higher numbers of activated CD45loCD11b+ microglia. Functionally, both neurons and microglia exhibited significantly higher levels of oxidative stress after injury. Microglia exhibited chronic deficits in phagocytosis of E. coli bacteria, and increased uptake of myelin and dying neurons. Living neurons showed decreased expression of synaptophysin and postsynaptic density (PSD)-95, along with greater numbers of microtubule-associated protein light chain 3 (LC3)-positive autophagosomes and increased mitochondrial mass that suggest dysregulation of autophagy. In summary, the late neurobehavioral changes found after murine TBI are similar to those found chronically after moderate-severe human head injury. Importantly, such changes are associated with microglial dysfunction and changes in neuronal activity.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Sarah J Doran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA; University of Maryland, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA; University of Maryland, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
5
|
Abstract
For decades it has been speculated that Parkinson's Disease (PD) is associated with dysfunction of the vestibular system, especially given that postural instability is one of the major symptoms of the disorder. Nonetheless, clear evidence of such a connection has been slow to emerge. There are still relatively few studies of the vestibulo-ocular reflexes (VORs) in PD. However, substantial evidence of vestibulo-spinal reflex deficits, in the form of abnormal vestibular-evoked myogenic potentials (VEMPs), now exists. The evidence for abnormalities in the subjective visual vertical is less consistent. However, some studies suggest that the integration of visual and vestibular information may be abnormal in PD. In the last few years, a number of studies have been published which demonstrate that the neuropathology associated with PD, such as Lewy bodies, is present in the central vestibular system. Increasingly, stochastic or noisy galvanic vestibular stimulation (nGVS) is being investigated as a potential treatment for PD, and a number of studies have presented evidence in support of this idea. The aim of this review is to summarize and critically evaluate the human and animal evidence relating to the connection between the vestibular system and PD.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences and The Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Benoit A, Besnard S, Guillamin M, Philoxene B, Sola B, Le Gall A, Machado ML, Toulouse J, Hitier M, Smith PF. Differential regulation of NMDA receptor-expressing neurons in the rat hippocampus and striatum following bilateral vestibular loss demonstrated using flow cytometry. Neurosci Lett 2018; 683:43-47. [PMID: 29936267 DOI: 10.1016/j.neulet.2018.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory.
Collapse
Affiliation(s)
- Alice Benoit
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Stephane Besnard
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Maryline Guillamin
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France; University Normandie, IFR ICORE, Caen, 14032, France
| | - Bruno Philoxene
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | | | - Anne Le Gall
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | | | - Joseph Toulouse
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Martin Hitier
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Brain Research New Zealand, Centre of Research Excellence, New Zealand; The Eisdell Moore Centre, University of Auckland, New Zealand.
| |
Collapse
|