1
|
Lu W, Song T, Li J, Zhang Y, Lu J. Individual-specific metabolic network based on 18F-FDG PET revealing multi-level aberrant metabolisms in Parkinson's disease. Hum Brain Mapp 2024; 45:e70026. [PMID: 39300894 PMCID: PMC11413412 DOI: 10.1002/hbm.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Metabolic network analysis in Parkinson's disease (PD) based on 18F-FDG PET has revealed PD-related metabolic patterns. However, alterations at the systemic metabolic network level and at the connection level between different brain regions still remain unknown. This study aimed to explore metabolic network alterations at multiple network levels among PD patients using an individual-specific metabolic network (ISMN) approach. 18F-FDG-PET images of patients with PD (n = 34) and healthy subjects (n = 47) were collected. Healthy subjects were further separated into reference group (n = 28) and control group (n = 19) randomly. Standardized uptake value normalized by lean body mass ratio (SULr) maps was calculated from the PET images. ISMNs were constructed based on SULr maps for PD patients and controls with reference to the reference group. Comparisons of nodal and edge features were performed between PD and control groups. Correlation analysis was conducted between multilevel network properties and clinical scales in PD group. A linear classifier was trained based on nodal or edge features to distinguish PD from controls. The distance from each patient's ISMN to the group-level difference network showed a negative correlation with Hoehn and Yahr stage (r = -0.390, p = .023). Eight nodes from ISMN were identified which exhibited significantly increased nodal degree in PD patients compared to controls (p < .05). Eleven edges were observed which demonstrated significant distinctions in Z-score values in comparisons to the control group (p < .05). Furthermore, the nodal and edge features showed comparable performances in PD diagnosis compared to the traditional SULr values, with area under the receiver operating characteristic curve larger than 0.91. The proposed ISMN approach revealed systemic metabolic deviations, as well as nodal and edge distinctions in PD, which might be supplementary to the existing findings on PD-related metabolic patterns.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsXuanwu HospitalBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsXuanwu HospitalBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsXuanwu HospitalBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
2
|
Zhao F, Li C, Zhuang Y, Yan Y, Gao Y, Behnisch T. Apoptosis signal-regulating kinase 1 ( Ask1) deficiency alleviates MPP +-induced impairment of evoked dopamine release in the mouse hippocampus. Front Cell Neurosci 2024; 18:1288991. [PMID: 38414754 PMCID: PMC10896914 DOI: 10.3389/fncel.2024.1288991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The dopaminergic system is susceptible to dysfunction in numerous neurological diseases, including Parkinson's disease (PD). In addition to motor symptoms, some PD patients may experience non-motor symptoms, including cognitive and memory deficits. A possible explanation for their manifestation is a disturbed pattern of dopamine release in brain regions involved in learning and memory, such as the hippocampus. Therefore, investigating neuropathological alterations in dopamine release prior to neurodegeneration is imperative. This study aimed to characterize evoked hippocampal dopamine release and assess the impact of the neurotoxin MPP+ using a genetically encoded dopamine sensor and gene expression analysis. Additionally, considering the potential neuroprotective attributes demonstrated by apoptosis signal-regulating kinase 1 (Ask1) in various animal-disease-like models, the study also aimed to determine whether Ask1 knockdown restores MPP+-altered dopamine release in acute hippocampal slices. We applied variations of low- and high-frequency stimulation to evoke dopamine release within different hippocampal regions and discovered that acute application of MPP+ reduced the amount of dopamine released and hindered the recovery of dopamine release after repeated stimulation. In addition, we observed that Ask1 deficiency attenuated the detrimental effects of MPP+ on the recovery of dopamine release after repeated stimulation. RNA sequencing analysis indicated that genes associated with the synaptic pathways are involved in response to MPP+ exposure. Notably, Ask1 deficiency was found to downregulate the expression of Slc5a7, a gene encoding a sodium-dependent high-affinity choline transporter that regulates acetylcholine levels. Respective follow-up experiments indicated that Slc5a7 plays a role in Ask1 deficiency-mediated protection against MPP+ neurotoxicity. In addition, increasing acetylcholine levels using an acetylcholinesterase inhibitor could exacerbate the toxicity of MPP+. In conclusion, our data imply that the modulation of the dopamine-acetylcholine balance may be a crucial mechanism of action underlying the neuroprotective effects of Ask1 deficiency in PD.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chuhan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, Guerra-Mora JR, Díaz-Martínez NE. Parkinson's disease: an update on preclinical studies of induced pluripotent stem cells. Neurologia 2023; 38:681-694. [PMID: 37858889 DOI: 10.1016/j.nrleng.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations. The treatments currently available have no neuroprotective effect. The exact causes of PD are poorly understood. Therefore, more precise preclinical models have been developed in recent years that use induced pluripotent stem cells (iPSC). In vitro studies can provide new information on PD pathogenesis and may help to identify new therapeutic targets or to develop new drugs.
Collapse
Affiliation(s)
- V Valadez-Barba
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - K Juárez-Navarro
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - E Padilla-Camberos
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - N F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - J R Guerra-Mora
- Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - N E Díaz-Martínez
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
4
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
5
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
6
|
García E, Arturo García‐De‐La‐Rosa L, Fernanda Veloz‐Castillo M, Ángel Méndez‐Rojas M, Chavarría A. Preservation of Dopamine Levels in a Mouse Model of Parkinson's Disease by Carboxymethylated Silica and Starch Nanoparticles Coupled to Silybin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Esperanza García
- Laboratorio de Neuroinmunología Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S México
| | | | | | | | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina Universidad Nacional Autónoma de México México
| |
Collapse
|
7
|
Application of neurotoxin- and pesticide-induced animal models of Parkinson's disease in the evaluation of new drug delivery systems. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:35-58. [PMID: 36651528 DOI: 10.2478/acph-2022-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neuro-degenerative disease after Alzheimer´s disease. It is characterized by motor symptoms such as akinesia, bradykinesia, tremor, rigidity, and postural abnormalities, due to the loss of nigral dopaminergic neurons and a decrease in the dopa-mine contents of the caudate-putamen structures. To this date, there is no cure for the disease and available treatments are aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In the past decades, animal models of PD have been proven to be valuable tools in elucidating the nature of the pathogenic processes involved in the disease, and in designing new pharmacological approaches. Here, we review the use of neurotoxin-induced and pesticide-induced animal models of PD, specifically those induced by rotenone, paraquat, maneb, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-hydroxydopamine), and their application in the development of new drug delivery systems for PD.
Collapse
|
8
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Cuenca-Bermejo L, Pizzichini E, Gonçalves VC, Guillén-Díaz M, Aguilar-Moñino E, Sánchez-Rodrigo C, González-Cuello AM, Fernández-Villalba E, Herrero MT. A New Tool to Study Parkinsonism in the Context of Aging: MPTP Intoxication in a Natural Model of Multimorbidity. Int J Mol Sci 2021; 22:4341. [PMID: 33919373 PMCID: PMC8122583 DOI: 10.3390/ijms22094341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer's disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson's disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100β were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Elisa Pizzichini
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Department of Biology and Biotechnology “Charles Darwin” (BBCD), Sapienza, University of Rome, 00185 Rome, Italy
| | - Valeria C. Gonçalves
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - María Guillén-Díaz
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Elena Aguilar-Moñino
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Consuelo Sánchez-Rodrigo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Ana-María González-Cuello
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
10
|
Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, Guerra-Mora JR, Díaz-Martínez NE. Parkinson's disease: An update on preclinical studies of induced pluripotent stem cells. Neurologia 2021; 38:S0213-4853(21)00020-7. [PMID: 33715888 DOI: 10.1016/j.nrl.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations. The treatments currently available have no neuroprotective effect. The exact causes of PD are poorly understood. Therefore, more precise preclinical models have been developed in recent years that use induced pluripotent stem cells. In vitro studies can provide new information on PD pathogenesis and may help to identify new therapeutic targets or to develop new drugs.
Collapse
Affiliation(s)
- V Valadez-Barba
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - K Juárez-Navarro
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - E Padilla-Camberos
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - N F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - J R Guerra-Mora
- Instituto Nacional de Cancerología, Ciudad de México, México
| | - N E Díaz-Martínez
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
11
|
Requejo C, López-de-Ipiña K, Ruiz-Ortega JÁ, Fernández E, Calvo PM, Morera-Herreras T, Miguelez C, Cardona-Grifoll L, Cepeda H, Ugedo L, Lafuente JV. Changes in Day/Night Activity in the 6-OHDA-Induced Experimental Model of Parkinson's Disease: Exploring Prodromal Biomarkers. Front Neurosci 2020; 14:590029. [PMID: 33154717 PMCID: PMC7591774 DOI: 10.3389/fnins.2020.590029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The search for experimental models mimicking an early stage of Parkinson's disease (PD) before motor manifestations is fundamental in order to explore early signs and get a better prognosis. Interestingly, our previous studies have indicated that 6-hydroxydopamine (6-OHDA) is a suitable model to induce an early degeneration of the nigrostriatal system without any gross motor impairment. Considering our previous findings, we aim to implement a novel system to monitor rats after intrastriatal injection of 6-OHDA to detect and analyze physiological changes underlying prodromal PD. Twenty male Sprague-Dawley rats were unilaterally injected with 6-OHDA (n = 10) or saline solution (n = 10) into the right striatum and placed in enriched environment cages where the activity was monitored. After 2 weeks, the amphetamine test was performed before the sacrifice. Immunohistochemistry was developed for the morphological evaluation and western blot analysis to assess molecular changes. Home-cage monitoring revealed behavioral changes in response to 6-OHDA administration including significant hyperactivity and hypoactivity during the light and dark phase, respectively, turning out in a change of the circadian timing. A preclinical stage of PD was functionally confirmed with the amphetamine test. Moreover, the loss of tyrosine hydroxylase expression was significantly correlated with the motor results, and 6-OHDA induced early proapoptotic events. Our findings provide evidence for a novel prodromal 6-OHDA model following a customized monitoring system that could give insights to detect non-motor deficits and molecular targets to test neuroprotective/neurorestorative agents.
Collapse
Affiliation(s)
- Catalina Requejo
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, The Friedman Brain Institute, New York, NY, United States
| | - Karmele López-de-Ipiña
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elsa Fernández
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Pilar M. Calvo
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Laura Cardona-Grifoll
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hodei Cepeda
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Rosa I, Di Censo D, Ranieri B, Di Giovanni G, Scarnati E, Alecci M, Galante A, Florio TM. Comparison between Tail Suspension Swing Test and Standard Rotation Test in Revealing Early Motor Behavioral Changes and Neurodegeneration in 6-OHDA Hemiparkinsonian Rats. Int J Mol Sci 2020; 21:ijms21082874. [PMID: 32326015 PMCID: PMC7216013 DOI: 10.3390/ijms21082874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
The unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease (PD) is one of the most commonly used in rodents. The anatomical, metabolic, and behavioral changes that occur after severe and stable 6-OHDA lesions have been extensively studied. Here, we investigated whether early motor behavioral deficits can be observed in the first week after the injection of 6-OHDA into the right substantia nigra pars compacta (SNc), and if they were indicative of the severity of the dopaminergic (DAergic) lesion in the SNc and the striatum at different time-points (day 1, 3, 5, 7, 14, 21). With this aim, we used our newly modified tail suspension swing test (TSST), the standard rotation test (RT), and immunohistochemical staining for tyrosine hydroxylase (TH). The TSST, but not the standard RT, revealed a spontaneous motor bias for the 6-OHDA-lesioned rats from the day 1 post-surgery. Both tests detected the motor asymmetry induced by (single and repeated) apomorphine (APO) challenges that correlated, in the first week, with the DAergic neuronal degeneration. The described TSST is fast and easy to perform, and in the drug-free condition is useful for the functional assessment of early motor asymmetry appearing after the 6-OHDA-lesion in the SNc, without the confounding effect of APO challenges.
Collapse
Affiliation(s)
- Ilaria Rosa
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- Correspondence: (I.R.); (G.D.G.)
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| | - Brigida Ranieri
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| | - Giuseppe Di Giovanni
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- Correspondence: (I.R.); (G.D.G.)
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- National Institute of Nuclear Physics, Gran Sasso National Laboratories, Assergi, 67100 L’Aquila, Italy
- SPIN-CNR Institute, Department of Physical and Chemical Sciences, 67100 L’Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- National Institute of Nuclear Physics, Gran Sasso National Laboratories, Assergi, 67100 L’Aquila, Italy
- SPIN-CNR Institute, Department of Physical and Chemical Sciences, 67100 L’Aquila, Italy
| | - Tiziana Marilena Florio
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| |
Collapse
|
13
|
Di Giovanni G, Grandi LC, Fedele E, Orban G, Salvadè A, Song W, Cuboni E, Stefani A, Kaelin-Lang A, Galati S. Acute and Chronic Dopaminergic Depletion Differently Affect Motor Thalamic Function. Int J Mol Sci 2020; 21:ijms21082734. [PMID: 32326424 PMCID: PMC7215393 DOI: 10.3390/ijms21082734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022] Open
Abstract
The motor thalamus (MTh) plays a crucial role in the basal ganglia (BG)-cortical loop in motor information codification. Despite this, there is limited evidence of MTh functionality in normal and Parkinsonian conditions. To shed light on the functional properties of the MTh, we examined the effects of acute and chronic dopamine (DA) depletion on the neuronal firing of MTh neurons, cortical/MTh interplay and MTh extracellular concentrations of glutamate (GLU) and gamma-aminobutyric acid (GABA) in two states of DA depletion: acute depletion induced by the tetrodotoxin (TTX) and chronic denervation obtained by 6-hydroxydopamine (6-OHDA), both infused into the medial forebrain bundle (MFB) in anesthetized rats. The acute TTX DA depletion caused a clear-cut reduction in MTh neuronal activity without changes in burst content, whereas the chronic 6-OHDA depletion did not modify the firing rate but increased the burst firing. The phase correlation analysis underscored that the 6-OHDA chronic DA depletion affected the MTh-cortical activity coupling compared to the acute TTX-induced DA depletion state. The TTX acute DA depletion caused a clear-cut increase of the MTh GABA concentration and no change of GLU levels. On the other hand, the 6-OHDA-induced chronic DA depletion led to a significant reduction of local GABA and an increase of GLU levels in the MTh. These data show that MTh is affected by DA depletion and support the hypothesis that a rebalancing of MTh in the chronic condition counterbalances the profound alteration arising after acute DA depletion state.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Laura Clara Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Ernesto Fedele
- Section of Pharmacology and Toxicology, Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gergely Orban
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Wei Song
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Eleonora Cuboni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| | - Alessandro Stefani
- Department of system medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
- Medical Faculty, University of Bern, 3008 Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Center for Movement Disorders, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
| |
Collapse
|
14
|
Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, Kilicoglu H. Menagerie: A text-mining tool to support animal-human translation in neurodegeneration research. PLoS One 2019; 14:e0226176. [PMID: 31846471 PMCID: PMC6917268 DOI: 10.1371/journal.pone.0226176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Discovery studies in animals constitute a cornerstone of biomedical research, but suffer from lack of generalizability to human populations. We propose that large-scale interrogation of these data could reveal patterns of animal use that could narrow the translational divide. We describe a text-mining approach that extracts translationally useful data from PubMed abstracts. These comprise six modules: species, model, genes, interventions/disease modifiers, overall outcome and functional outcome measures. Existing National Library of Medicine natural language processing tools (SemRep, GNormPlus and the Chemical annotator) underpin the program and are further augmented by various rules, term lists, and machine learning models. Evaluation of the program using a 98-abstract test set achieved F1 scores ranging from 0.75-0.95 across all modules, and exceeded F1 scores obtained from comparable baseline programs. Next, the program was applied to a larger 14,481 abstract data set (2008-2017). Expected and previously identified patterns of species and model use for the field were obtained. As previously noted, the majority of studies reported promising outcomes. Longitudinal patterns of intervention type or gene mentions were demonstrated, and patterns of animal model use characteristic of the Parkinson's disease field were confirmed. The primary function of the program is to overcome low external validity of animal model systems by aggregating evidence across a diversity of models that capture different aspects of a multifaceted cellular process. Some aspects of the tool are generalizable, whereas others are field-specific. In the initial version presented here, we demonstrate proof of concept within a single disease area, Parkinson's disease. However, the program can be expanded in modular fashion to support a wider range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Dongwook Shin
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amanda P. Beck
- Department of Pathology, Albert Einstein College of Medicine, New York, United States of America
| | - Natalie Zatz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Charles A. Sneiderman
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Animal Models for Parkinson's Disease Research: Trends in the 2000s. Int J Mol Sci 2019; 20:ijms20215402. [PMID: 31671557 PMCID: PMC6862023 DOI: 10.3390/ijms20215402] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.
Collapse
|
16
|
Guzman-Ruiz MA, de La Mora MB, Torres X, Meza C, Garcia E, Chavarria A. Oral Silica Nanoparticles Lack of Neurotoxic Effects in a Parkinson's Disease Model: A Possible Nanocarrier? IEEE Trans Nanobioscience 2019; 18:535-541. [PMID: 31398128 DOI: 10.1109/tnb.2019.2934074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Silica nanoparticles (SiO2-NP) are an option as drug carriers due to their biodegradability, biocompatibility, and capacity to bind themselves to other compounds. However, until now, the effect of these particles on the brain when neurodegeneration occurs is unknown. Hence, this work focused on the in vivo evaluation of the neurotoxic effects of SiO2-NP when oxidative and inflammation are present during the development of Parkinson's disease. To determine whether SiO2-NP may act as a non-neurotoxic carrier we evaluated if the intragastric administration (ig) of SiO2-NP of 150 nm (25, 50 and 100 mg/kg administered for five consecutive days) increased neuronal damage induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. SiO2-NP administration did not further decrease cell viability assessed by MTT reduction, nor increased lipid peroxidation measured by TBARS or TNF α levels in the striatum and the substantia nigra in the MPTP model. Furthermore, we observed no additional reduction in striatal dopamine levels. The present results suggest that SiO2-NP of 150 nm are suitable nanocarrier for Parkinson's disease drugs without generating any additional damage.
Collapse
|
17
|
Sossi V, Cheng JC, Klyuzhin IS. Imaging in Neurodegeneration: Movement Disorders. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2871760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Effects of Substantia Nigra pars compacta lesion on the behavioral sequencing in the 6-OHDA model of Parkinson’s disease. Behav Brain Res 2019; 362:28-35. [DOI: 10.1016/j.bbr.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
|
19
|
Naseer A, Rani M, Naz S, Razzak MI, Imran M, Xu G. Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04069-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Feng XY, Yang J, Zhang X, Zhu J. Gastrointestinal non-motor dysfunction in Parkinson's disease model rats with 6-hydroxydopamine. Physiol Res 2019; 68:295-303. [PMID: 30628835 DOI: 10.33549/physiolres.933995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a progressive loss of mesencephalic dopaminergic neurons of the substantia nigra (SN). To further evaluate its pathophysiology, accurate animal models are needed. The current study aims to verify the impact of a 6-hydroxydopamine (6-OHDA) bilateral microinjection into the SN on gastrointestinal symptoms in rats and confirm that the 6-OHDA rat model is an appropriate tool to investigate the mechanisms of Parkinsonian GI disorders. Immunohistochemistry, digital X-ray imaging, short-circuit current, FITC-dextran permeability and ultra-performance liquid chromatography tandem mass spectrometry were used in this study. The results indicated that the dopaminergic neurons in SN and fibres in the striatum were markedly reduced in 6-OHDA rats. The 6-OHDA rats manifested reductions in occupancy in a rotarod test and increases in daily food debris but no difference in body mass or daily consumption. Compared with control rats, faecal pellets and their contents were significantly decreased, whereas gastric emptying and intestinal transport were delayed in 6-OHDA rats. The increased in vivo FITC-dextran permeability and decreased intestinal transepithelial resistance in the model suggest attenuated barrier function in the digestive tract in the PD model. Moreover, inflammatory factors in the plasma showed that pro-inflammatory factors IL-1? and IL-8 were significantly increased in 6-OHDA rats. Collectively, these findings indicate that the model is an interesting experimental tool to investigate the mechanisms involved in the progression of gastrointestinal dysfunction in PD.
Collapse
Affiliation(s)
- Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | | | | | | |
Collapse
|
21
|
Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson’s disease: Studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev 2019; 96:335-352. [DOI: 10.1016/j.neubiorev.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
|
22
|
Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural Changes Observed in the Piriform Cortex in a Rat Model of Pre-motor Parkinson's Disease. Front Cell Neurosci 2018; 12:479. [PMID: 30618629 PMCID: PMC6296349 DOI: 10.3389/fncel.2018.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) offers perhaps, the most promising route to a successful clinical intervention, and the use of an animal model exhibiting symptoms comparable to those observed in PD patients in the early stage of the disease, may facilitate screening of novel therapies for delaying the onset of more debilitating motor and behavioral abnormalities. In this study, a rat model of pre-motor PD was used to study the etiology of hyposmia, a non-motor symptom linked to the early stage of the disease when the motor symptoms have yet to be experienced. The study focussed on determining the effect of a partial reduction of both dopamine and noradrenaline levels on the olfactory cortex. Neuroinflammation and striking structural changes were observed in the model. These changes were prevented by treatment with a neuroprotective drug, a glucagon-like peptide-1 (GLP1) receptor agonist, exendin-4 (EX-4).
Collapse
|