1
|
Zhang C, Lin Q, Niu Y, Li W, Gong X, Cong F, Wang Y, Calhoun VD. Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data. Hum Brain Mapp 2023; 44:5712-5728. [PMID: 37647216 PMCID: PMC10619417 DOI: 10.1002/hbm.26471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/27/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex-valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude-only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex-valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex-valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex-valued fMRI, this framework is generalized to work with magnitude-only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex-valued data from University of New Mexico and magnitude-only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude-only fMRI data in terms of retaining more BOLD-related activity and fewer unwanted voxels, compared with amplitude-based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.
Collapse
Affiliation(s)
- Chao‐Ying Zhang
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Qiu‐Hua Lin
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Yan‐Wei Niu
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Wei‐Xing Li
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Xiao‐Feng Gong
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
- Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland
| | - Yu‐Ping Wang
- Tulane UniversityBiomedical Engineering DepartmentNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Yang H, Vu T, Long Q, Calhoun V, Adali T. Identification of Homogeneous Subgroups from Resting-State fMRI Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063264. [PMID: 36991975 PMCID: PMC10051904 DOI: 10.3390/s23063264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/12/2023]
Abstract
The identification of homogeneous subgroups of patients with psychiatric disorders can play an important role in achieving personalized medicine and is essential to provide insights for understanding neuropsychological mechanisms of various mental disorders. The functional connectivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric disorders in a clinically useful way is still being studied. In this work, we propose a framework that makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem. The proposed pipeline is designed to analyze a large-scale multi-subject fMRI dataset with a fully data-driven method, a new constrained independent component analysis algorithm based on entropy bound minimization (c-EBM), followed by an eigenspectrum analysis approach. A set of resting-state network (RSN) templates is generated from an independent dataset and used as constraints for c-EBM. The constraints present a foundation for subgroup identification by establishing a connection across the subjects and aligning subject-wise separate ICA analyses. The proposed pipeline was applied to a dataset comprising 464 psychiatric patients and discovered meaningful subgroups. Subjects within the identified subgroups share similar activation patterns in certain brain areas. The identified subgroups show significant group differences in multiple meaningful brain areas including dorsolateral prefrontal cortex and anterior cingulate cortex. Three sets of cognitive test scores were used to verify the identified subgroups, and most of them showed significant differences across subgroups, which provides further confirmation of the identified subgroups. In summary, this work represents an important step forward in using neuroimaging data to characterize mental disorders.
Collapse
Affiliation(s)
- Hanlu Yang
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Trung Vu
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Boonyakitanont P, Gabrielson B, Belyaeva I, Olikkal P, Songsiri J, Wang YP, Wilson TW, Calhoun VD, Stephen JM, Adali T. An ICA-based framework for joint analysis of cognitive scores and MEG event-related fields. 2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) 2022; 2022:3594-3598. [PMID: 36086046 DOI: 10.1109/embc48229.2022.9871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper proposes an independent component analysis (ICA)-based framework for exploring associations between neural signals measured with magnetoencephalography (MEG) and non-neuroimaging data of healthy subjects. Our proposed framework contains methods for subject group identification, latent source estimation of MEG, and discriminatory source visualization. Hierarchical clustering on principal components (HCPC) is used to cluster subject groups based on cognitive scores, and ICA is performed on MEG evoked responses such that not only higher-order statistics but also sample dependence within sources is taken into account. The clustered subject labels and estimated sources are jointly analyzed to determine discriminatory sources. Finally, discriminatory sources are used to calculate global difference maps (GDMs) for the summary. Results using a new data set reveal that estimated sources are significantly correlated with cognitive measures and subject demographics. Discriminatory sources have significant correlations with variables that have not been previously used for group identification, and GDMs can effectively identify group differences.
Collapse
Affiliation(s)
| | - B. Gabrielson
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - I. Belyaeva
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | - P. Olikkal
- University of Maryland,Baltimore County, Baltimore,MD,USA
| | | | | | - T. W. Wilson
- Boys Town National Research Hospital,Omaha,NE,USA
| | - V. D. Calhoun
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - J. M. Stephen
- Lovelace Biomedical Research Institute,The Mind Research Network a division,Albuquerque,NM,USA
| | - T. Adali
- University of Maryland,Baltimore County, Baltimore,MD,USA
| |
Collapse
|