1
|
Kang KJ, Kim YG, Oh SJ, Won J, Lim KS, Baek SH, Lee Y, Choi JY. Determination of optimal injection dose in a small animal-dedicated positron emission tomography for non-human primate neurological studies. Appl Radiat Isot 2024; 211:111404. [PMID: 38917619 DOI: 10.1016/j.apradiso.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.
Collapse
Affiliation(s)
- Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Kyung Seob Lim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea.
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
2
|
López-Ornelas A, Escobedo-Avila I, Ramírez-García G, Lara-Rodarte R, Meléndez-Ramírez C, Urrieta-Chávez B, Barrios-García T, Cáceres-Chávez VA, Flores-Ponce X, Carmona F, Reynoso CA, Aguilar C, Kerik NE, Rocha L, Verdugo-Díaz L, Treviño V, Bargas J, Ramos-Mejía V, Fernández-Ruiz J, Campos-Romo A, Velasco I. Human Embryonic Stem Cell-Derived Immature Midbrain Dopaminergic Neurons Transplanted in Parkinsonian Monkeys. Cells 2023; 12:2738. [PMID: 38067166 PMCID: PMC10706241 DOI: 10.3390/cells12232738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Gabriel Ramírez-García
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Beetsi Urrieta-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Tonatiuh Barrios-García
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - Verónica A. Cáceres-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Xóchitl Flores-Ponce
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Carlos Alberto Reynoso
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Carlos Aguilar
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Nora E. Kerik
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Leticia Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - José Bargas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Verónica Ramos-Mejía
- Gene Regulation, Stem Cells, and Development Group, GENYO-Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain;
| | - Juan Fernández-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Aurelio Campos-Romo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
3
|
Ni R. PET imaging in animal models of Parkinson's disease. Behav Brain Res 2023; 438:114174. [PMID: 36283568 DOI: 10.1016/j.bbr.2022.114174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Buttigieg E, Scheller A, El Waly B, Kirchhoff F, Debarbieux F. Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics 2023; 20:22-38. [PMID: 36653665 PMCID: PMC10119369 DOI: 10.1007/s13311-022-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a complex and long-lasting neurodegenerative disease of the central nervous system (CNS), characterized by the loss of myelin within the white matter and cortical fibers, axonopathy, and inflammatory responses leading to consequent sensory-motor and cognitive deficits of patients. While complete resolution of the disease is not yet a reality, partial tissue repair has been observed in patients which offers hope for therapeutic strategies. To address the molecular and cellular events of the pathomechanisms, a variety of animal models have been developed to investigate distinct aspects of MS disease. Recent advances of multiscale intravital imaging facilitated the direct in vivo analysis of MS in the animal models with perspective of clinical transfer to patients. This review gives an overview of MS animal models, focusing on the current imaging modalities at the microscopic and macroscopic levels and emphasizing the importance of multimodal approaches to improve our understanding of the disease and minimize the use of animals.
Collapse
Affiliation(s)
- Emeline Buttigieg
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Bilal El Waly
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Franck Debarbieux
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France.
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Determination of the Unilaterally Damaged Region May Depend on the Asymmetry of Carotid Blood Flow Velocity in Hemiparkinsonian Monkey: A Pilot Study. PARKINSON'S DISEASE 2022; 2022:4382145. [PMID: 36407681 PMCID: PMC9668443 DOI: 10.1155/2022/4382145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.
Collapse
|
7
|
Wang XL, Feng ST, Wang YT, Zhang NN, Guo ZY, Yan X, Yuan YH, Wang ZZ, Chen NH, Zhang Y. Mangiferin, a natural glucoxilxanthone, inhibits mitochondrial dynamin-related protein 1 and relieves aberrant mitophagic proteins in mice model of Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154281. [PMID: 35752080 DOI: 10.1016/j.phymed.2022.154281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease featured to mitochondrial dysfunction in neuronal cells. Dynamin-related protein 1 (Drp1) is an important regulator of mitochondrial fission and subsequent mitophagy. Mangiferin (MGF) is a glucosyl xanthone mainly derived from Mangifera indica L., possessing multifaceted properties, e.g., antioxidant, anti-inflammatory, and enhancement of cognitive ability. Besides, it can cross the blood-brain barrier, thereby exerting a neuroprotective effect. However, so far, MGF's effect in balancing mitochondrial homeostasis via regulation of Drp1 level and mitophagic pathway in PD remains rarely reported. PURPOSE We aimed to investigate the neuroprotective effect of MGF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and examine the possible mechanisms. METHODS We utilized C57BL/6 mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); Behavioral parameters, containing the open field test, balance beam, pole test, and rotarod test, assessed the locomotor activity; immunohistochemistry assessed the number of TH-positive neurons; transmission electron microscopy detected ultrastructural mitochondrial morphology in the dopaminergic neuron; complex I enzymatic activity microplate assay kit measured the mitochondrial complex I activity; ATP determination kit measured ATP levels in mitochondria isolated from cells or striatal tissues; western blot measured the levels of Drp1 and mitophagic proteins. RESULTS We observed that MGF could mitigate motor deficiency and improve the expression of tyrosine hydroxylase in the substantia nigra of MPTP-induced PD mice. Furthermore, MGF not only ameliorated mitochondrial ultrastructure, but also improved mitochondrial ATP content. Within mitochondria, MGF could reduce Drp1 expression and reverse the expressions of mitophagic proteins, including PINK1, Parkin, NIX, BNIP3, FUNDC1, and p62. CONCLUSION Present study indicates that MGF benefits mitochondrial networks by recovering mitochondrial ultrastructure and ATP contents, reducing mitochondrial Drp1, and modulating mitophagic proteins in the MPTP-induced PD mice model, which revealed a novel acting mechanism of MGF in PD's treatment.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Adenosine Triphosphate/metabolism
- Animals
- Disease Models, Animal
- Dopaminergic Neurons
- Dynamins/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mitochondria
- Mitochondrial Proteins/metabolism
- Neurodegenerative Diseases/drug therapy
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease/drug therapy
- Parkinson Disease/metabolism
- Xanthones/pharmacology
- Xanthones/therapeutic use
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
8
|
Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna) 2022; 129:445-461. [DOI: 10.1007/s00702-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
9
|
Mallet D, Dufourd T, Decourt M, Carcenac C, Bossù P, Verlin L, Fernagut PO, Benoit-Marand M, Spalletta G, Barbier EL, Carnicella S, Sgambato V, Fauvelle F, Boulet S. A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. J Clin Invest 2022; 132:e146400. [PMID: 34914634 PMCID: PMC8843749 DOI: 10.1172/jci146400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
BackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics.ResultsOur translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, nonmotor signs and, very interestingly, also discriminated PD patients from healthy subjects.ConclusionFrom our translational study, which included 3 animal models and 3 de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis that may possibly predict early PD development, before motor symptoms appear.FundingFrench National Research Agency (ANR), DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Association France Parkinson.
Collapse
Affiliation(s)
- David Mallet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thibault Dufourd
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mélina Decourt
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Carole Carcenac
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Paola Bossù
- Dipartimento di Neurologia Clinica e Comportamentale, Laboratorio di Neuropsicobiologia Sperimentale, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laure Verlin
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Emmanuel L. Barbier
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Sgambato
- Université de Lyon, CNRS UMR5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Florence Fauvelle
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sabrina Boulet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
10
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
11
|
Li ZF, Cui L, Jin MM, Hu DY, Hou XG, Liu SS, Zhang X, Zhu JH. A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. Dis Model Mech 2022; 15:273997. [PMID: 35023548 PMCID: PMC8922027 DOI: 10.1242/dmm.049125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is associated with α-synuclein-based Lewy body pathology, which has been difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression than 2D cells and improved dopaminergic-like phenotypes, as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, and low- and high-molecular mass oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon N-methyl-4-phenyl pyridine or rotenone treatment. Phosphorylated α-synuclein was accumulated, and detergent-insoluble α-synuclein fraction was observed, in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, and β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD that recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications. Summary: This study provides a convenient 3D model of Parkinson's disease (PD), which recapitulates α-synuclein pathologies in human cells and could be used to investigate PD mechanisms and screen drugs.
Collapse
Affiliation(s)
- Zhao-Feng Li
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Cui
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mi-Mi Jin
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong-Yan Hu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Gang Hou
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu-Shu Liu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.
Collapse
|
13
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Guo ZY, Hu JH, Yan X, Chen NH, Zhang Y. Inhibition of dynamin-related protein 1 ameliorates the mitochondrial ultrastructure via PINK1 and Parkin in the mice model of Parkinson's disease. Eur J Pharmacol 2021; 907:174262. [PMID: 34146589 DOI: 10.1016/j.ejphar.2021.174262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the prevalent neurodegenerative disorder characterized by the degeneration of the nigrostriatal neurons. Dynamin-related protein 1 (Drp1) is a key regulator mediating mitochondrial fission and affecting mitophagy in neurons. It has been reported that the inhibition of Drp1 may be beneficial to PD. However, the role of Drp1 and mitophagy in PD remains elusive. Therefore, in this research, we investigated the role of Drp1 and the underlying mechanisms in the mice model of PD. We used the dynasore, a GTPase inhibitor, to inhibit the expression of Drp1. We found that inhibition of Drp1 could ameliorate the motor deficits and the expression of tyrosine hydroxylase in the mice of the PD model. But Drp1 inhibition did not affect mitochondria number and morphological parameters. Moreover, suppression of Drp1 up-regulated the mitochondrial expressions of PINK1 and Parkin while not affected the expressions of NIX and BNIP3. Conclusively, our findings suggest that the inhibition of Drp1 ameliorated the mitochondrial ultrastructure at least via regulating PINK1 and Parkin in the mice of the PD model. This study also implicates that inhibition of Drp1 might impact mitophagy and recover mitochondrial homeostasis in PD.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
14
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
15
|
Enomoto T, Nakako T, Goda M, Wada E, Kitamura A, Fujii Y, Ikeda K. A novel phosphodiesterase 1 inhibitor reverses L-dopa-induced dyskinesia, but not motivation deficits, in monkeys. Pharmacol Biochem Behav 2021; 205:173183. [PMID: 33774006 DOI: 10.1016/j.pbb.2021.173183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
The enzyme phosphodiesterase 1 (PDE1) is highly expressed in the striatum and cortex. However, its role in corticostriatal function has not been fully investigated. The present study was aimed at evaluating the therapeutic potential of PDE1 inhibitors in treating motivation deficits and 3,4-dihydroxy-L-phenylalanine (L-dopa)-induced dyskinesia, which are pathological conditions of the corticostriatal system. We used a novel PDE1 inhibitor 3-ethyl-2-{[trans-4-(methoxymethyl)cyclohexyl]oxy}-7-(tetrahydro-2H-pyran-4-yl)-imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-143136), which was identified in our drug discovery program. Motivation in monkeys was measured using a progressive ratio task. L-Dopa-induced dyskinesia and disability scores were measured in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. DSR-143136 had a high selectivity for PDE1 over other PDE families and 67 other biologic targets. A dopamine D1 receptor antagonist SCH-39166 at 0.01, 0.03 and 0.1 mg/kg potently decreased motivation in monkeys. However, DSR-143136 at 0.3 and 3 mg/kg did not affect motivation deficits induced by low-dose SCH-39166 (0.01 mg/kg). On the other hand, DSR-143136 at 3 mg/kg potently decreased L-dopa-induced dyskinesia in the Parkinsonian monkey model. Importantly, this antidyskinesic efficacy was NOT accompanied by detrimental effects on motor function. Further, this compound decreased on-time with marked or severe dyskinesia, without affecting on-time itself. These findings suggest that PDE1 inhibitor could be a therapeutic candidate for treating L-dopa-induced dyskinesia in Parkinson's disease, but not for motivation deficits.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan.
| | - Tomokazu Nakako
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Masao Goda
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Erika Wada
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Atsushi Kitamura
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yuki Fujii
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Kazuhito Ikeda
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| |
Collapse
|
16
|
Seo J, Won J, Kim K, Park J, Yeo HG, Kim YG, Baek SH, Lee H, Jeon CY, Choi WS, Lee S, Kim KJ, Park SH, Son Y, Jeong KJ, Lim KS, Kang P, Lee HY, Son HC, Huh JW, Kim YH, Lee DS, Lee SR, Choi JW, Lee Y. Impaired Hand Dexterity Function in a Non-human Primate Model with Chronic Parkinson's Disease. Exp Neurobiol 2020; 29:376-388. [PMID: 33154199 PMCID: PMC7649085 DOI: 10.5607/en20040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Symptoms of Parkinson’s disease (PD) caused by loss of dopaminergic neurons are accompanied by movement disorders, including tremors, rigidity, bradykinesia, and akinesia. Non-human primate (NHP) models with PD play an essential role in the analysis of PD pathophysiology and behavior symptoms. As impairments of hand dexterity function can affect activities of daily living in patients with PD, research on hand dexterity function in NHP models with chronic PD is essential. Traditional rating scales previously used in the evaluation of animal spontaneous behavior were insufficient due to factors related to subjectivity and passivity. Thus, experimentally designed applications for an appropriate apparatus are necessary. In this study, we aimed to longitudinally assess hand dexterity function using hand dexterity task (HDT) in NHP-PD models. To validate this assessment, we analyzed the alteration in Parkinsonian tremor signs and the functionality of presynaptic dopaminergic neuron using positron emission tomography imaging of dopamine transporters in these models. In addition, a significant inverse correlation between HDT and DAT level was identified, but no local bias was found. The correlation with intention tremor signs was lower than the resting tremor. In conclusion, the evaluation of HDT may reflect behavioral symptoms of NHP-PD models. Furthermore, HDT was effectively used to experimentally distinguish intention tremors from other tremors.
Collapse
Affiliation(s)
- Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hoonwon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sangil Lee
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Ki Jin Kim
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yeonghoon Son
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Kang Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Hwal-Yong Lee
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Woong Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea.,Department of Information and Communication Engineering, DGIST, Daegu 42988, Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
17
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
18
|
Xiong S, Liu W, Zhou Y, Mo Y, Liu Y, Chen X, Pan H, Yuan D, Wang Q, Chen T. Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci 2020; 15:518-528. [PMID: 32952674 PMCID: PMC7486547 DOI: 10.1016/j.ajps.2019.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RES), a non-flavonoid polyphenol extracted from a wide variety of plants, exhibits neuroprotective activities against Parkinson's disease (PD). However, undesirable water solubility of RES reduces its oral bioavailability and demonstrates low efficacy in blood and brain, thus limiting its application. In present study, a nanocrystal formulation of RES (RES-NCs) was developed to enhance its oral bioavailability and delivery into brain for PD treatment. RES-NCs were fabricated with hydroxypropyl methylcellulose (HPMC) stabilizer via antisolvent precipitation approach. The obtained RES-NCs displayed the particle size of 222.54 ± 1.66 nm, the PDI of 0.125 ± 0.035, the zeta potential of -9.41 ± 0.37 mV, and a rapid in vitro dissolution rate. Molecular dynamics simulation of RES and HPMC revealed an interaction energy of -68.09 kJ/mol and a binding energy of -30.98 ± 0.388 kJ/mol, indicating that the spontaneous binding between the two molecules is through van der Waals forces. RES-NCs conferred enhanced cellular uptake as well as improved permeability relative to pure RES. In addition, RES-NCs were able to protect neurons against cytotoxicity induced by MPP+. Meanwhile, RES-NCs exerted no significant toxic effects on zebrafish embryos and larvae, and did not influence their survival and hatching rates. When orally administered to rats, RES-NCs exhibited more favorable pharmacokinetics than pure RES, with higher plasma and brain concentrations. More importantly, MPTP-induced PD mice showed notable improvements in behavior, attenuated dopamine deficiency, and elevated levels of dopamine and its metabolites after the treatment with RES-NCs. Furthermore, immunoblot analysis revealed that the neuroprotective role of RES-NCs may be at least partially mediated by Akt/Gsk3β signaling pathway. Taken altogether, RES-NCs can serve as a potential treatment modality for PD, offering means of improving RES oral bioavailability and brain accumulation.
Collapse
Affiliation(s)
- Sha Xiong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yile Zhou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yousheng Mo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dongsheng Yuan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
19
|
Belloli S, Morari M, Murtaj V, Valtorta S, Moresco RM, Gilardi MC. Translation Imaging in Parkinson's Disease: Focus on Neuroinflammation. Front Aging Neurosci 2020; 12:152. [PMID: 32581765 PMCID: PMC7289967 DOI: 10.3389/fnagi.2020.00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.
Collapse
Affiliation(s)
- Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Valentina Murtaj
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Chronic Infiltration of T Lymphocytes into the Brain in a Non-human Primate Model of Parkinson's Disease. Neuroscience 2020; 431:73-85. [PMID: 32036014 DOI: 10.1016/j.neuroscience.2020.01.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Study of interactions between the nervous system and immunity offers insights into the pathogenesis of Parkinson's disease (PD) and potential therapeutic strategies for neurodegenerative diseases. Studies on rodents have revealed regulatory mechanisms of microglial activation and T lymphocyte recruitment in PD. However, the mechanisms underlying chronic T lymphocyte infiltration into the brain after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection into a non-human primate (NHP) model of PD remain unknown. This study aimed to investigate changes in serum RANTES (regulated on activation, normal T cell expression and secretion) and analyze the chronic infiltration of T lymphocytes into the brain and microglia activation in NHPs at 48 weeks post-MPTP administration. We found selective and local chronic infiltration of CD4+ and CD8+ T lymphocytes, loss of dopaminergic neurons, dopamine transporter expression, chronic normalization of RANTES in the peripheral blood, and altered microglial morphology at 48 weeks after MPTP injection. This study confirms the involvement of CD4+ and CD8+ T lymphocyte infiltration in MPTP-induced NHP models of PD. Additionally, we corroborated previous findings regarding the mechanisms of T lymphocyte-induced neurodegeneration. The findings of chronic infiltration of T lymphocytes in our NHP model of PD provide novel insights into PD pathogenesis and the development of preventive and therapeutic agents.
Collapse
|
21
|
Seo J, Yeo HG, Park J, Won J, Kim K, Jin YB, Koo BS, Lim KS, Jeong KJ, Kang P, Lee HY, Son HC, Baek SH, Jeon CY, Song BS, Huh JW, Lee DS, Lee SR, Kim SU, Lee Y. A pilot study on assessment of locomotor behavior using a video tracking system in minipigs. Exp Anim 2020; 69:62-69. [PMID: 31484848 PMCID: PMC7004810 DOI: 10.1538/expanim.19-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pigs are often selected for large animal models including for neuroscience and behavioral research, because their anatomy and biochemistry are similar to those of humans. However, behavioral assessments, in combination with objective long-term monitoring, is difficult. In this study, we introduced an automated video tracking system which was previously used in rodent studies, for use with pig models. Locomotor behaviors (total distance, number of zone transitions, and velocity) were evaluated and their changes were validated by different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration methods and dosing regimens. Three minipigs (23-29 kg) received subcutaneous or intravenous MPTP, either 1 or 3 times per week. Immediately after MPTP injection, the minipigs remained in a corner and exhibited reduced trajectory. In addition, the total distance travelled, number of zone transitions, and velocity were greatly reduced at every MPTP administration in all the minipigs, accompanying to increased resting time. However, the MPTP-induced symptoms were reversed when MPTP administration was terminated. In conclusion, this automated video-tracking system was able to monitor long-term locomotor activity and differentiate detailed alterations in large animals. It has the advantages of being easy to use, higher resolution, less effort, and more delicate tracking. Additionally, as our method can be applied to the animals' home pen, no habituation is needed.
Collapse
Affiliation(s)
- Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Physical Therapy, Graduate School of Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sun-Uk Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
22
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
23
|
Nielsen JJJ, Lillethorup TP, Glud AN, Sørensen JCH, Orlowski D. The application of iPSCs in Parkinson’s disease. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Kim S, Lee Y, Jeon CY, Jin YB, Oh S, Lee C. Observation of magnetic susceptibility changes within the thalamus: a comparative study between healthy and Parkinson’s disease afflicted cynomolgus monkeys using 7 T MRI. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although the thalamus is known to modulate basal ganglia function related to motor control activity, the abnormal changes within the thalamus during distinct medical complications have been scarcely investigated. In order to explore the feasibility of assessing iron accumulation in the thalamus as an informative biomarker for Parkinson’s disease (PD), this study was designed to employ quantitative susceptibility mapping using a 7 T magnetic resonance imaging system in cynomolgus monkeys. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-injected cynomolgus monkey and a healthy control (HC) were examined by 7 T magnetic resonance imaging. Positron emission tomography with 18F-N-(3-fluoro propyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane was also employed to identify the relationship between iron deposits and dopamine depletion. All acquired values were averaged within the volume of interest of the nigrostriatal pathway.
Findings
Compared with the HC, the overall elevation of iron deposition within the thalamus in the Parkinson’s disease model (about 53.81% increase) was similar to that in the substantia nigra (54.81%) region. Substantial susceptibility changes were observed in the intralaminar part of the thalamus (about 70.78% increase). Additionally, we observed that in the Parkinson’s disease model, binding potential values obtained from positron emission tomography were considerably decreased in the thalamus (97.51%) and substantia nigra (92.48%).
Conclusions
The increased iron deposition in the thalamus showed negative correlation with dopaminergic activity in PD, supporting the idea that iron accumulation affects glutaminergic inputs and dopaminergic neurons. This investigation indicates that the remarkable susceptibility changes in the thalamus could be an initial major diagnostic biomarker for Parkinson’s disease-related motor symptoms.
Collapse
|
25
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Valek L, Auburger G, Tegeder I. Sensory neuropathy and nociception in rodent models of Parkinson's disease. Dis Model Mech 2019; 12:12/6/dmm039396. [PMID: 31248900 PMCID: PMC6602317 DOI: 10.1242/dmm.039396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) often manifests with prodromal pain and sensory losses whose etiologies are not well understood. Multiple genetic and toxicity-based rodent models of PD partly recapitulate the histopathology and motor function deficits. Although far less studied, there is some evidence that rodents, similar to humans, develop sensory manifestations of the disease, which may precede motor disturbances and help to elucidate the underlying mechanisms of PD-associated pain at the molecular and neuron circuit levels. The present Review summarizes nociception and other sensory functions in frequently used rodent PD models within the context of the complex phenotypes. In terms of mechanisms, it appears that the acute loss of dopaminergic neurons in systemic toxicity models (MPTP, rotenone) primarily causes nociceptive hyperexcitability, presumably owing to a loss of inhibitory control, whereas genetic models primarily result in a progressive loss of heat perception, reflecting sensory fiber neuropathies. At the molecular level, neither α-synuclein deposits alone nor failure of mitophagy alone appear to be strong enough to result in axonal or synaptic pathology of nociceptive neurons that manifest at the behavioral level, and peripheral sensory loss may mask central ‘pain’ in behavioral tests. Hence, allostatic combinations or additional challenges and novel behavioral assessments are needed to better evaluate PD-associated sensory neuropathies and pain in rodents. Summary: Rodent models of Parkinson's disease partially develop prodromal somatosensory and olfactory dysfunctions reminiscent of sensory neuropathies in patients and reveal mechanistic insight, but data are incomplete and fragmented.
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| |
Collapse
|
27
|
Park J, Seo J, Won J, Yeo HG, Ahn YJ, Kim K, Jin YB, Koo BS, Lim KS, Jeong KJ, Kang P, Lee HY, Baek SH, Jeon CY, Hong JJ, Huh JW, Kim YH, Park SJ, Kim SU, Lee DS, Lee SR, Lee Y. Abnormal Mitochondria in a Non-human Primate Model of MPTP-induced Parkinson's Disease: Drp1 and CDK5/p25 Signaling. Exp Neurobiol 2019; 28:414-424. [PMID: 31308800 PMCID: PMC6614070 DOI: 10.5607/en.2019.28.3.414] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondria continuously fuse and divide to maintain homeostasis. An impairment in the balance between the fusion and fission processes can trigger mitochondrial dysfunction. Accumulating evidence suggests that mitochondrial dysfunction is related to neurodegenerative diseases such as Parkinson's disease (PD), with excessive mitochondrial fission in dopaminergic neurons being one of the pathological mechanisms of PD. Here, we investigated the balance between mitochondrial fusion and fission in the substantia nigra of a non-human primate model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. We found that MPTP induced shorter and abnormally distributed mitochondria. This phenomenon was accompanied by the activation of dynamin-related protein 1 (Drp1), a mitochondrial fission protein, through increased phosphorylation at S616. Thereafter, we assessed for activation of the components of the cyclin-dependent kinase 5 (CDK5) and extracellular signal-regulated kinase (ERK) signaling cascades, which are known regulators of Drp1(S616) phosphorylation. MPTP induced an increase in p25 and p35, which are required for CDK5 activation. Together, these findings suggest that the phosphorylation of Drp1(S616) by CDK5 is involved in mitochondrial fission in the substantia nigra of a non-human primate model of MPTP-induced PD.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Yu-Jin Ahn
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jung-Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sun-Uk Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|