1
|
Nakano K, Shimizu Y, Arai T, Kaneko T, Okamura T. The versatile electric condition in mouse embryos for genome editing using a three-step square-wave pulse electroporator. Exp Anim 2021; 71:214-223. [PMID: 34880157 PMCID: PMC9130034 DOI: 10.1538/expanim.21-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Technique for Animal Knockout system by Electroporation (TAKE) is a simple and efficient method to generate genetically modified (GM) mice using the clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems. To reinforce the versatility of electroporation used for gene editing in mice, the electric condition was optimized
for vitrified-warmed mouse embryos, and applied to the fresh embryos from widely used inbred strains (C57BL/6NCr, BALB/cCrSlc, FVB/NJcl, and C3H/HeJJcl). The electric pulse settings (poring
pulse: voltage, 150 V; pulse width, 1.0 ms; pulse interval, 50 ms; number of pulses, +4; transfer pulse: voltage, 20 V; pulse width, 50 ms; pulse interval, 50 ms; number of pulses, ±5) were
optimal for vitrified-warmed mouse embryos, which could efficiently deliver the gRNA/Cas9 complex into the zygotes without zona pellucida thinning process and edit the target locus. These
electric condition efficiently generated GM mice in widely used inbred mouse strains. In addition, electroporation using the electrode with a 5 mm gap could introduce more than 100 embryos
within 5 min without specific pretreatment and sophisticated technical skills, such as microinjection, and exhibited a high developmental rate of embryos and genome-editing efficiency in the
generated offspring, leading to the rapid and efficient generation of genome editing mice. The electric condition used in this study is highly versatile and can contribute to understanding
human diseases and gene functions by generating GM mice more easily and efficiently.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Taketo Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University.,Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| |
Collapse
|
2
|
Savier E, Sedigh-Sarvestani M, Wimmer R, Fitzpatrick D. A bright future for the tree shrew in neuroscience research: Summary from the inaugural Tree Shrew Users Meeting. Zool Res 2021; 42:478-481. [PMID: 34213094 PMCID: PMC8317191 DOI: 10.24272/j.issn.2095-8137.2021.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tree shrews (Tupaia spp.) have been used in neuroscience research since the 1960s due to their evolutionary proximity to primates. The use and interest in this animal model have recently increased, in part due to the adaptation of modern neuroscience tools in this species. These tools include quantitative behavioral assays, calcium imaging, optogenetics and transgenics. To facilitate the exchange and development of these new technologies and associated research findings, we organized the inaugural "Tree Shrew Users Meeting" which was held online due to the COVID-19 pandemic. Here, we review this meeting and discuss the history of tree shrews as an animal model in neuroscience research and summarize the current themes being investigated using this animal, as well as future directions.
Collapse
Affiliation(s)
- Elise Savier
- University of Virginia, Charlottesville, Virginia 22903-1738, USA. E-mail:
| | | | - Ralf Wimmer
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - David Fitzpatrick
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458-2906, USA
| |
Collapse
|
3
|
Nishizono H, Yasuda R, Laviv T. Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Front Genome Ed 2020; 2:602970. [PMID: 34713226 PMCID: PMC8525404 DOI: 10.3389/fgeed.2020.602970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Hirofumi Nishizono
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | | |
Collapse
|
4
|
Byambaa S, Uosaki H, Hara H, Nagao Y, Abe T, Shibata H, Nureki O, Ohmori T, Hanazono Y. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9. Exp Anim 2019; 69:189-198. [PMID: 31801915 PMCID: PMC7220705 DOI: 10.1538/expanim.19-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes.
Collapse
Affiliation(s)
- Suvd Byambaa
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Yasumitsu Nagao
- Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Experimental Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Tomoyuki Abe
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| |
Collapse
|