1
|
Fan W, Ma S, Wang Z, Han Y, Liu X, Gu R, Cai Q. Correlation between white matter hyperintensity and delusional symptoms in Alzheimer's disease. BMC Psychiatry 2023; 23:914. [PMID: 38057778 PMCID: PMC10698988 DOI: 10.1186/s12888-023-05420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) often exhibit neuropsychiatric symptoms (NPS), particularly delusions. Previous studies have shown an association between white matter hyperintensities (WMH) and specific NPS. This study aims to explore the relationship between WMH volume and delusions in AD patients by comparing the WMH volumes of delusional and non-delusional subgroups. METHODS 80 AD patients were divided into a delusion group (n = 36) and a non-delusion group (n = 44) based on the Neuropsychiatric Inventory (NPI). The brain cortical volume and WMH volume were quantitatively calculated for all 80 patients, including total WMH volume, periventricular WMH (PVWMH) volume, deep WMH volume, as well as bilateral frontal lobe, temporal lobe, parietal lobe, and occipital lobe WMH volumes. Firstly, we compared the differences in WMH volumes between the delusion group and non-delusion group. Then, within the delusion group, we further categorized patients based on severity scores of their delusional symptoms into mild (1 point), moderate (2 points), or severe groups (3 points). We compared the WMH volumes among these three groups to investigate the role of WMH volume in delusional symptoms. RESULTS There was a significant difference in left occipital lobe WMH volume between the delusion group and non-delusion group(P < 0.05). Within the delusion group itself, there were significant differences in overall WMH volume as well as PVWMH volume among patients with mild or severe levels of delusions(P < 0.05). CONCLUSION Left occipital lobe WMH volume may be associated with the occurrence of delusional AD patients, and the total volume of whole-brain WMH and PVWMH volume may affect the degree of severity of delusional symptoms.
Collapse
Affiliation(s)
- Wei Fan
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shaolun Ma
- University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqi Wang
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Yuanyuan Han
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xiaowei Liu
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Rui Gu
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Qingyan Cai
- University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Bahrani AA, Abner EL, DeCarli CS, Barber JM, Sutton AC, Maillard P, Sandoval F, Arfanakis K, Yang YC, Evia AM, Schneider JA, Habes M, Franklin CG, Seshadri S, Satizabal CL, Caprihan A, Thompson JF, Rosenberg GA, Wang DJ, Jann K, Zhao C, Lu H, Rosenberg PB, Albert MS, Ali DG, Singh H, Schwab K, Greenberg SM, Helmer KG, Powel DK, Gold BT, Goldstein LB, Wilcock DM, Jicha GA. Multi-Site Cross-Site Inter-Rater and Test-Retest Reliability and Construct Validity of the MarkVCID White Matter Hyperintensity Growth and Regression Protocol. J Alzheimers Dis 2023; 96:683-693. [PMID: 37840499 PMCID: PMC11009792 DOI: 10.3233/jad-230629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease. OBJECTIVE Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol. METHODS The NINDS-supported MarkVCID Consortium evaluated a neuroimaging biomarker developed to track WMH change. Test-retest and cross-site inter-rater reliability of the protocol were assessed. Cognitive test scores were analyzed in relation to WMH changes to explore its construct validity. RESULTS ICC values for test-retest reliability of WMH growth and regression were 0.969 and 0.937 respectively, while for cross-site inter-rater ICC values for WMH growth and regression were 0.995 and 0.990 respectively. Word list long-delay free-recall was negatively associated with WMH growth (p < 0.028) but was not associated with WMH regression. CONCLUSIONS The present data demonstrate robust ICC validity of a WMH growth/regression protocol over a one-year period as measured by cross-site inter-rater and test-retest reliability. These data suggest that this approach may serve an important role in clinical trials of disease-modifying agents for VCID that may preferentially affect WMH growth, stability, or regression.
Collapse
Affiliation(s)
- Ahmed A. Bahrani
- Department of Neurology, University of Kentucky, College of Medicine, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
- Department of Epidemiology & Environmental Health, University of Kentucky, College of Public Health, Lexington, KY, USA
| | | | - Justin M. Barber
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Abigail C. Sutton
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, CA, USA
| | | | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yung-Chuan Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Arnold M. Evia
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Mohamad Habes
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Crystal G. Franklin
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | | | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| | - Danny J.J. Wang
- Departments of Neurology and Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- Departments of Neurology and Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Departments of Neurology and Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul B. Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Doaa G. Ali
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Herpreet Singh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin Schwab
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Karl G. Helmer
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David K. Powel
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | - Brian T. Gold
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | - Larry B. Goldstein
- Department of Neurology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Gregory A. Jicha
- Department of Neurology, University of Kentucky, College of Medicine, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Jochems ACC, Arteaga C, Chappell F, Ritakari T, Hooley M, Doubal F, Muñoz Maniega S, Wardlaw JM. Longitudinal Changes of White Matter Hyperintensities in Sporadic Small Vessel Disease: A Systematic Review and Meta-analysis. Neurology 2022; 99:e2454-e2463. [PMID: 36123130 PMCID: PMC9728036 DOI: 10.1212/wnl.0000000000201205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES White matter hyperintensities (WMHs) are frequent imaging features of small vessel disease (SVD) and related to poor clinical outcomes. WMH progression over time is well described, but regression was also noted recently, although the frequency and associated factors are unknown. This systematic review and meta-analysis aims to assess longitudinal intraindividual WMH volume changes in sporadic SVD. METHODS We searched EMBASE and MEDLINE for articles up to 28 January 2022 on WMH volume changes using MRI on ≥2 time points in adults with sporadic SVD. We classified populations (healthy/community-dwelling, stroke, cognitive, other vascular risk factors, and depression) based on study characteristics. We performed random-effects meta-analyses with Knapp-Hartung adjustment to determine mean WMH volume change (change in milliliters, percentage of intracranial volume [%ICV], or milliliters per year), 95% CI, and prediction intervals (PIs, limits of increase and decrease) using unadjusted data. Risk of bias assessment tool for nonrandomized studies was used to assess risk of bias. We followed Preferred Reporting in Systematic Review and Meta-Analysis guidelines. RESULTS Forty-one articles, 12,284 participants, met the inclusion criteria. Thirteen articles had low risk of bias across all domains. Mean WMH volume increased over time by 1.74 mL (95% CI 1.23-2.26; PI -1.24 to 4.73 mL; 27 articles, N = 7,411, mean time interval 2.7 years, SD = 1.65); 0.25 %ICV (95% CI 0.14-0.36; PI -0.06 to 0.56; 6 articles, N = 1,071, mean time interval 3.5 years, SD = 1.54); or 0.58 mL/y (95% CI 0.35-0.81; PI -0.26 to 1.41; 8 articles, N = 3,802). In addition, 13 articles specifically mentioned and/or provided data on WMH regression, which occurred in asymptomatic, stroke, and cognitive disorders related to SVD. DISCUSSION Net mean WMH volume increases over time mask wide-ranging change (e.g., mean increase of 1.75 mL ranging from 1.25 mL decrease to 4.75 mL increase), with regression documented explicitly in up to one-third of participants. More knowledge on underlying mechanisms, associated factors, and clinical correlates is needed, as WMH regression could be an important intervention target.
Collapse
Affiliation(s)
- Angela C C Jochems
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Carmen Arteaga
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Francesca Chappell
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Tuula Ritakari
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Monique Hooley
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Fergus Doubal
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Susana Muñoz Maniega
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom.
| |
Collapse
|