1
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
2
|
Chatzigeorgiou M, Constantoudis V, Katsiotis M, Beazi-Katsioti M, Boukos N. Segmentability evaluation of back-scattered SEM images of multiphase materials. Ultramicroscopy 2024; 257:113892. [PMID: 38065012 DOI: 10.1016/j.ultramic.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Segmentation methods are very useful tools in the Electron Microscopy inspection of materials, enabling the extraction of quantitative results from microscopy images. Back-Scattered Electron (BSE) images carry information of the mean atomic number in the interaction volume and hence can be used to quantify the phase composition in multiphase materials. Since phase composition and proportion affects the material properties and hence its applications, the segmentation accuracy of such images rendered of critical importance for material science. In this work, the notion of segmentability for BSE images is proposed to define the ability of an image to be segmented accurately. This notion can be used to guide the image acquisition process so that segmentability is maximized and segmentation accuracy is ensured. An index is devised to quantify segmentability based on a combination of the modified Fisher Discrimination Ratio and of the second Minkowski functional capturing intensity and spatial aspects of BSE images respectively. The suggested Segmentability Index (SI) is validated in synthetic BSE images which are generated with a novel algorithm allowing the independent control of spatial distribution of phases and their grayscale intensity histograms. Additionally, SI is applied in real-synthetic BSE images, where the real greyscale distributions of Ordinary Portland Cement (OPC) clinker crystallographic phases are used, to demonstrate the ability of SI to indicate the optimum choice of critical image acquisition settings leading to the more accurate segmentation output.
Collapse
Affiliation(s)
- Manolis Chatzigeorgiou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi Attikis, Greece; School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Athens, Zografou 15780, Greece.
| | - Vassilios Constantoudis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi Attikis, Greece
| | - Marios Katsiotis
- Group Innovation & Technology, TITAN Cement S.A., 22A Halkidos Street, Athens 111 43, Greece
| | - Margarita Beazi-Katsioti
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Athens, Zografou 15780, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi Attikis, Greece
| |
Collapse
|
3
|
Du L, Roy S, Wang P, Li Z, Qiu X, Zhang Y, Yuan J, Guo B. Unveiling the future: Advancements in MRI imaging for neurodegenerative disorders. Ageing Res Rev 2024; 95:102230. [PMID: 38364912 DOI: 10.1016/j.arr.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Neurodegenerative disorders represent a significant and growing global health challenge, necessitating continuous advancements in diagnostic tools for accurate and early detection. This work explores the recent progress in Magnetic Resonance Imaging (MRI) techniques and their application in the realm of neurodegenerative disorders. The introductory section provides a comprehensive overview of the study's background, significance, and objectives. Recognizing the current challenges associated with conventional MRI, the manuscript delves into advanced imaging techniques such as high-resolution structural imaging (HR-MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and positron emission tomography-MRI (PET-MRI) fusion. Each technique is critically examined regarding its potential to address theranostic limitations and contribute to a more nuanced understanding of the underlying pathology. A substantial portion of the work is dedicated to exploring the applications of advanced MRI in specific neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis (ALS). In addressing the future landscape, the manuscript examines technological advances, including the integration of machine learning and artificial intelligence in neuroimaging. The conclusion summarizes key findings, outlines implications for future research, and underscores the importance of these advancements in reshaping our understanding and approach to neurodegenerative disorders.
Collapse
Affiliation(s)
- Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Pan Wang
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Xiaoting Qiu
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianpeng Yuan
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Chang RSK, Nguyen S, Chen Z, Foster E, Kwan P. Role of machine learning in the management of epilepsy: a systematic review protocol. BMJ Open 2024; 14:e079785. [PMID: 38272549 PMCID: PMC10823996 DOI: 10.1136/bmjopen-2023-079785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Machine learning is a rapidly expanding field and is already incorporated into many aspects of medicine including diagnostics, prognostication and clinical decision-support tools. Epilepsy is a common and disabling neurological disorder, however, management remains challenging in many cases, despite expanding therapeutic options. We present a systematic review protocol to explore the role of machine learning in the management of epilepsy. METHODS AND ANALYSIS This protocol has been drafted with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for Protocols. A literature search will be conducted in databases including MEDLINE, Embase, Scopus and Web of Science. A PRISMA flow chart will be constructed to summarise the study workflow. As the scope of this review is the clinical application of machine learning, the selection of papers will be focused on studies directly related to clinical decision-making in management of epilepsy, specifically the prediction of response to antiseizure medications, development of drug-resistant epilepsy, and epilepsy surgery and neuromodulation outcomes. Data will be extracted following the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies checklist. Prediction model Risk Of Bias ASsessment Tool will be used for the quality assessment of the included studies. Syntheses of quantitative data will be presented in narrative format. ETHICS AND DISSEMINATION As this study is a systematic review which does not involve patients or animals, ethics approval is not required. The results of the systematic review will be submitted to peer-review journals for publication and presented in academic conferences. PROSPERO REGISTRATION NUMBER CRD42023442156.
Collapse
Affiliation(s)
- Richard Shek-Kwan Chang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Shani Nguyen
- Monash University Faculty of Medicine Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Kerr WT, McFarlane KN. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep 2023; 23:869-879. [PMID: 38060133 DOI: 10.1007/s11910-023-01318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Machine Learning (ML) and Artificial Intelligence (AI) are data-driven techniques to translate raw data into applicable and interpretable insights that can assist in clinical decision making. Some of these tools have extremely promising initial results, earning both great excitement and creating hype. This non-technical article reviews recent developments in ML/AI in epilepsy to assist the current practicing epileptologist in understanding both the benefits and limitations of integrating ML/AI tools into their clinical practice. RECENT FINDINGS ML/AI tools have been developed to assist clinicians in almost every clinical decision including (1) predicting future epilepsy in people at risk, (2) detecting and monitoring for seizures, (3) differentiating epilepsy from mimics, (4) using data to improve neuroanatomic localization and lateralization, and (5) tracking and predicting response to medical and surgical treatments. We also discuss practical, ethical, and equity considerations in the development and application of ML/AI tools including chatbots based on Large Language Models (e.g., ChatGPT). ML/AI tools will change how clinical medicine is practiced, but, with rare exceptions, the transferability to other centers, effectiveness, and safety of these approaches have not yet been established rigorously. In the future, ML/AI will not replace epileptologists, but epileptologists with ML/AI will replace epileptologists without ML/AI.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Informatics, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Katherine N McFarlane
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Kaestner E, Rao J, Chang AJ, Wang ZI, Busch RM, Keller SS, Rüber T, Drane DL, Stoub T, Gleichgerrcht E, Bonilha L, Hasenstab K, McDonald C. Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy: A Proof-of-Principle Study. Neurology 2023; 101:e324-e335. [PMID: 37202160 PMCID: PMC10382265 DOI: 10.1212/wnl.0000000000207411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A new frontier in diagnostic radiology is the inclusion of machine-assisted support tools that facilitate the identification of subtle lesions often not visible to the human eye. Structural neuroimaging plays an essential role in the identification of lesions in patients with epilepsy, which often coincide with the seizure focus. In this study, we explored the potential for a convolutional neural network (CNN) to determine lateralization of seizure onset in patients with epilepsy using T1-weighted structural MRI scans as input. METHODS Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers, we tested whether a CNN based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and a hippocampal volume logistic regression (comparison with current clinically available measures). Furthermore, we leveraged a CNN feature visualization technique to identify regions used to classify patients. RESULTS Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance. The CNN outperformed the randomized model (average concordance of 51.7%) on 100% of runs with an average improvement of 26.2% and outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%. Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. DISCUSSION These extratemporal lobe features underscore the importance of whole-brain models to highlight areas worthy of clinician scrutiny during temporal lobe epilepsy lateralization. This proof-of-concept study illustrates that a CNN applied to structural MRI data can visually aid clinician-led localization of epileptogenic zone and identify extrahippocampal regions that may require additional radiologic attention. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with drug-resistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality.
Collapse
Affiliation(s)
- Erik Kaestner
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Jun Rao
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Allen J Chang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Zhong Irene Wang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Robyn M Busch
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Simon S Keller
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Theodor Rüber
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Daniel L Drane
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Travis Stoub
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Ezequiel Gleichgerrcht
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Leonardo Bonilha
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Kyle Hasenstab
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Carrie McDonald
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA.
| |
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Singh A, Velagala VR, Kumar T, Dutta RR, Sontakke T. The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review. Cureus 2023; 15:e42460. [PMID: 37637568 PMCID: PMC10457132 DOI: 10.7759/cureus.42460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures affecting millions worldwide. Medically intractable seizures in epilepsy patients are not only detrimental to the quality of life but also pose a significant threat to their safety. Outcomes of epilepsy therapy can be improved by early detection and intervention during the interictal window period. Electroencephalography is the primary diagnostic tool for epilepsy, but accurate interpretation of seizure activity is challenging and highly time-consuming. Machine learning (ML) and deep learning (DL) algorithms enable us to analyze complex EEG data, which can not only help us diagnose but also locate epileptogenic zones and predict medical and surgical treatment outcomes. DL models such as convolutional neural networks (CNNs), inspired by visual processing, can be used to classify EEG activity. By applying preprocessing techniques, signal quality can be enhanced by denoising and artifact removal. DL can also be incorporated into the analysis of magnetic resonance imaging (MRI) data, which can help in the localization of epileptogenic zones in the brain. Proper detection of these zones can help in good neurosurgical outcomes. Recent advancements in DL have facilitated the implementation of these systems in neural implants and wearable devices, allowing for real-time seizure detection. This has the potential to transform the management of drug-refractory epilepsy. This review explores the application of ML and DL techniques to Electroencephalograms (EEGs), MRI, and wearable devices for epileptic seizure detection. This review briefly explains the fundamentals of both artificial intelligence (AI) and DL, highlighting these systems' potential advantages and undeniable limitations.
Collapse
Affiliation(s)
- Arihant Singh
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vivek R Velagala
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishq Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajoshee R Dutta
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tushar Sontakke
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Uher D, Drenthen GS, Schijns OEMG, Colon AJ, Hofman PAM, van Lanen RHGJ, Hoeberigs CM, Jansen JFA, Backes WH. Advances in Image Processing for Epileptogenic Zone Detection with MRI. Radiology 2023; 307:e220927. [PMID: 37129491 DOI: 10.1148/radiol.220927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Focal epilepsy is a common and severe neurologic disorder. Neuroimaging aims to identify the epileptogenic zone (EZ), preferably as a macroscopic structural lesion. For approximately a third of patients with chronic drug-resistant focal epilepsy, the EZ cannot be precisely identified using standard 3.0-T MRI. This may be due to either the EZ being undetectable at imaging or the seizure activity being caused by a physiologic abnormality rather than a structural lesion. Computational image processing has recently been shown to aid radiologic assessments and increase the success rate of uncovering suspicious regions by enhancing their visual conspicuity. While structural image analysis is at the forefront of EZ detection, physiologic image analysis has also been shown to provide valuable information about EZ location. This narrative review summarizes and explains the current state-of-the-art computational approaches for image analysis and presents their potential for EZ detection. Current limitations of the methods and possible future directions to augment EZ detection are discussed.
Collapse
Affiliation(s)
- Daniel Uher
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Gerhard S Drenthen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Olaf E M G Schijns
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Albert J Colon
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Paul A M Hofman
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Rick H G J van Lanen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Christianne M Hoeberigs
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Jacobus F A Jansen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Walter H Backes
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| |
Collapse
|
10
|
Baciu M, O'Sullivan L, Torlay L, Banjac S. New insights for predicting surgery outcome in patients with temporal lobe epilepsy. A systematic review. Rev Neurol (Paris) 2023:S0035-3787(23)00884-6. [PMID: 37003897 DOI: 10.1016/j.neurol.2023.02.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Resective surgery is the treatment of choice for one-third of adult patients with focal, drug-resistant epilepsy. This procedure is associated with substantial clinical and cognitive risks. In clinical practice, there is no validated model for epilepsy surgery outcome prediction (ESOP). Meta-analyses on ESOP studies assessing prognostic factors report discrepancies in terms of study design. Our review aims to systematically investigate methodological and analytical aspects of studies predicting clinical and cognitive outcomes after temporal lobe epilepsy surgery. A systematic review of ESOP studies published between 2000 and 2022 from three databases (MEDLINE, Web of Science, and PsycINFO) was completed by following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. It yielded 4867 articles. Among them, 21 corresponded to our inclusion criteria and were therefore retained in the final review. The risk of bias was assessed using A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies (PROBAST). Data extracted from the 21 studies were analyzed using narrative synthesis and descriptive statistics. Our findings show an increase in the use of multimodal datasets and machine learning analyses in recent ESOP studies, although regression remained the most frequently used approach. We also identified a more frequent use of network notions in recent ESOP studies. Nevertheless, several methodological issues were noted, such as small sample sizes, lack of information on the follow-up period, variability in seizure outcome, and the definition of neuropsychological postoperative change. Of 21 studies, only one provided a clinical tool to anticipate the cognitive outcome after epilepsy surgery. We conclude that methodological issues should be overcome before we move towards more complete models to better predict clinical and cognitive outcomes after epilepsy surgery. Recommendations for future studies to harness the possibilities of multimodal datasets and data fusion, are provided. A stronger bridge between fundamental and clinical research may result in developing accessible clinical tools.
Collapse
Affiliation(s)
- M Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L O'Sullivan
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L Torlay
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - S Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| |
Collapse
|
11
|
Karakis I. Sage Against the Machine: Promise and Challenge of Artificial Intelligence in Epilepsy. Epilepsy Curr 2022; 22:279-281. [PMID: 36285200 PMCID: PMC9549233 DOI: 10.1177/15357597221105139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical
Dysplasia Gill RS, Lee HM, Caldairou B, et al. Neurology. 2021 Oct
19;97(16):e1571-e1582. doi:10.1212/WNL.0000000000012698. Epub 2021 Sep 14. PMID: 34521691; PMCID:
PMC8548962. Background and Objective: To test the hypothesis that a multicenter-validated computer deep learning
algorithm detects MRI-negative focal cortical dysplasia (FCD). Methods: We used clinically acquired 3-dimensional (3D) T1-weighted and 3D fluid-attenuated
inversion recovery MRI of 148 patients (median age 23 years [range 2-55 years]; 47%
female) with histologically verified FCD at 9 centers to train a deep convolutional
neural network (CNN) classifier. Images were initially deemed MRI-negative in 51% of
patients, in whom intracranial EEG determined the focus. For risk stratification,
the CNN incorporated bayesian uncertainty estimation as a measure of confidence. To
evaluate performance, detection maps were compared to expert FCD manual labels.
Sensitivity was tested in an independent cohort of 23 cases with FCD (13 ± 10
years). Applying the algorithm to 42 healthy controls and 89 controls with temporal
lobe epilepsy disease tested specificity. Results: Overall sensitivity was 93% (137 of 148 FCD detected) using a leave-one-site-out
cross-validation, with an average of 6 false positives per patient. Sensitivity in
MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with
the highest confidence; in half, it ranked the highest. Sensitivity in the
independent cohort was 83% (19 of 23; average of 5 false positives per patient).
Specificity was 89% in healthy and disease controls. Discussion: This first multicenter-validated deep learning detection algorithm yields the
highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk
stratification, this classifier may assist clinicians in adjusting hypotheses
relative to other tests, increasing diagnostic confidence. Moreover,
generalizability across age and MRI hardware makes this approach ideal for
presurgical evaluation of MRI-negative epilepsy. Classification of evidence: This
study provides Class III evidence that deep learning on multimodal MRI accurately
identifies FCD in patients with epilepsy initially diagnosed as MRI negative.
Collapse
Affiliation(s)
- Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|