1
|
McDonald AJ, Nemat P, van 't Hullenaar T, Schetters D, van Mourik Y, Alonso-Lozares I, De Vries TJ, Marchant NJ. Punishment-resistant alcohol intake is mediated by the nucleus accumbens shell in female rats. Neuropsychopharmacology 2024; 49:2022-2031. [PMID: 39080457 PMCID: PMC11480374 DOI: 10.1038/s41386-024-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 10/17/2024]
Abstract
Alcohol use is widespread across many societies. While most people can control their alcohol use, a vulnerable sub-population develops alcohol use disorder, characterized by continued alcohol use despite negative consequences. We used a rat model of alcohol self-administration despite negative consequences to identify brain activity associated with this addiction-like behaviour. We and others have previously shown that response-contingent punishment of alcohol self-administration with mild footshock reliably identifies two sub-populations. One group substantially decreases alcohol self-administration in the face of punishment (punishment-sensitive, controlled) and another group continues alcohol self-administration despite negative consequences (punishment-resistant, addiction-like behaviour). In this study, we aimed to validate this model in females and identify associated brain regions. We trained Long-Evans outbred rats (n = 96) to self-administer 20% ethanol, and then introduced response-contingent footshock. We found that female rats consumed more alcohol in unpunished and punished sessions compared to male rats. In one group of rats (n = 24, m/f), we identified neuronal activity associated with punishment-resistant alcohol self-administration using the neurobiological marker of activity cFos. We found lower cFos expression in NAcSh associated with punishment-resistant alcohol self-administration. In another group of rats (n = 72, m/f), we used chemogenetic inhibition of NAcSh during punished alcohol self-administration. We found that chemogenetic NAcSh inhibition had no effect on unpunished alcohol self-administration but selectively increased punished alcohol self-administration in punishment-resistant female rats. These results indicate that more female rats develop punishment-resistant alcohol consumption, and that NAcSh hypofunction may underlie this phenotype.
Collapse
Affiliation(s)
- Allison J McDonald
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Panthea Nemat
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Thijs van 't Hullenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Dustin Schetters
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Yvar van Mourik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Isis Alonso-Lozares
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Taco J De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Nathan J Marchant
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology 2024; 49:1758-1766. [PMID: 38898206 PMCID: PMC11399243 DOI: 10.1038/s41386-024-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.
Collapse
Affiliation(s)
- Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
3
|
Berrio JP, Hestehave S, Kalliokoski O. Reliability of sucrose preference testing following short or no food and water deprivation-a Systematic Review and Meta-Analysis of rat models of chronic unpredictable stress. Transl Psychiatry 2024; 14:39. [PMID: 38242881 PMCID: PMC10799054 DOI: 10.1038/s41398-024-02742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The sucrose preference test is a popular test for anhedonia in the chronic unpredictable stress model of depression. Yet, the test does not always produce consistent results. Long food and water deprivation before the test, while often implemented, confounds the results by introducing unwanted drives in the form of hunger and thirst. We assessed the reliability of the test when only short or no fasting was used. We searched PubMed, Embase, and Web of Science for studies in rats exposed to chronic unpredictable stress that used no more than 6 h of food and/or water deprivation before the test. Sweet consumptions, for stressed and control/antidepressant-treated animals, in 132 studies were pooled using random effects models. We found a decrease in sweet consumption in stressed rats, compared to controls, that was halved when a non-caloric sweetener was used and significantly reduced when sucrose consumption was corrected for body weight. What is more, the length of food and water deprivation was found to confound the effect. The effect was reversed when the stressed rats were treated with antidepressants. Methodological strategies meant to control for recognized sources of bias when conducting the test were often missing, and so was a clear and complete report of essential study information. Our results indicate that not only is food and water deprivation before the test unnecessary, but not recommended. Even in absence of long fasting, we found evidence of an additional effect on sweet consumption that is unrelated to anhedonia. Without properly controlling for non-hedonic drivers of consumption, the test is unreliable as a proxy measure of anhedonia. Strengthening the methodological rigor and addressing the confounding effect of metabolic factors in the sucrose preference test prevents misleading conclusions that harm the translatability of the associated research and perpetuates the use of animals for little gain.
Collapse
Affiliation(s)
- Jenny P Berrio
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| | - Sara Hestehave
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Otto Kalliokoski
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
4
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|