1
|
Garofalo S, Cocozza G, Mormino A, Bernardini G, Russo E, Ielpo D, Andolina D, Ventura R, Martinello K, Renzi M, Fucile S, Laffranchi M, Mortari EP, Carsetti R, Sciumè G, Sozzani S, Santoni A, Tremblay ME, Ransohoff RM, Limatola C. Natural killer cells and innate lymphoid cells 1 tune anxiety-like behavior and memory in mice via interferon-γ and acetylcholine. Nat Commun 2023; 14:3103. [PMID: 37248289 DOI: 10.1038/s41467-023-38899-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | | | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marie-Eve Tremblay
- Centre de Recherche CHU de Quebec-Université Laval, Quebec City, QC, Canada
| | | | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Rome, Italy.
| |
Collapse
|
2
|
Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus. J Neuroinflammation 2022; 19:156. [PMID: 35715859 PMCID: PMC9205094 DOI: 10.1186/s12974-022-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.
Collapse
|
3
|
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337-361. [PMID: 29368213 DOI: 10.1007/s00401-018-1807-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
Abstract
The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.
Collapse
Affiliation(s)
- Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France.
| | - Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France
- Brain-i, Lyon, France
| | | | | | | | | |
Collapse
|
4
|
Vuillemenot BR, Korte S, Wright TL, Adams EL, Boyd RB, Butt MT. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic. Toxicol Sci 2018; 152:3-9. [PMID: 27354708 DOI: 10.1093/toxsci/kfw072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics.
Collapse
Affiliation(s)
| | - Sven Korte
- Covance Laboratories GmbH, Münster, Germany
| | | | - Eric L Adams
- Northern Biomedical Research, Muskegon, Michigan
| | | | | |
Collapse
|
5
|
Central Nervous System-Peripheral Immune System Dialogue in Neurological Disorders: Possible Application of Neuroimmunology in Urology. Int Neurourol J 2016; 20:S8-14. [PMID: 27230462 PMCID: PMC4895905 DOI: 10.5213/inj.1632614.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous concepts of immune-privileged sites obscured the role of peripheral immune cells in neurological disorders and excluded the consideration of the potential benefits of immunotherapy. Recently, however, numerous studies have demonstrated that the blood–brain barrier in the central nervous system is an educational barrier rather than an absolute barrier to peripheral immune cells. Emerging knowledge of immune-privileged sites suggests that peripheral immune cells can infiltrate these sites via educative gates and that crosstalk can occur between infiltrating immune cells and the central nervous system parenchyma. This concept can be expanded to the testis, which has long been considered an immune-privileged site, and to neurogenic bladder dysfunction. Thus, we propose that the relationship between peripheral immune cells, the brain, and the urologic system should be considered as an additional possible mechanism in urologic diseases, and that immunotherapy might be an alternative therapeutic strategy in treating neurogenic bladder dysfunction.
Collapse
|
6
|
Moore GRW, Laule C, Leung E, Pavlova V, Morgan BP, Esiri MM. Complement and Humoral Adaptive Immunity in the Human Choroid Plexus: Roles for Stromal Concretions, Basement Membranes, and Epithelium. J Neuropathol Exp Neurol 2016; 75:415-28. [PMID: 26994633 PMCID: PMC4824036 DOI: 10.1093/jnen/nlw017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The choroid plexus (CP) provides a barrier to entry of toxic molecules from the blood into the brain and transports vital molecules into the cerebrospinal fluid. While a great deal is known about CP physiology, relatively little is known about its immunology. Here, we show immunohistochemical data that help define the role of the CP in innate and adaptive humoral immunity. The results show that complement, in the form of C1q, C3d, C9, or C9neo, is preferentially deposited in stromal concretions. In contrast, immunoglobulin (Ig) G (IgG) and IgA are more often found in CP epithelial cells, and IgM is found in either locale. C4d, IgD, and IgE are rarely, if ever, seen in the CP. In multiple sclerosis CP, basement membrane C9 or stromal IgA patterns were common but were not specific for the disease. These findings indicate that the CP may orchestrate the clearance of complement, particularly by deposition in its concretions, IgA and IgG preferentially via its epithelium, and IgM by either mechanism.
Collapse
Affiliation(s)
- G R Wayne Moore
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME).
| | - Cornelia Laule
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Esther Leung
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Vladimira Pavlova
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - B Paul Morgan
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Margaret M Esiri
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| |
Collapse
|
7
|
T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS One 2016; 11:e0150945. [PMID: 26942913 PMCID: PMC4778949 DOI: 10.1371/journal.pone.0150945] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 11/25/2022] Open
Abstract
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.
Collapse
|
8
|
Kaur C, Rathnasamy G, Ling EA. The Choroid Plexus in Healthy and Diseased Brain. J Neuropathol Exp Neurol 2016; 75:198-213. [DOI: 10.1093/jnen/nlv030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
9
|
Yang J, Shanahan KJ, Shriver LP, Luciano MG. Exercise-induced changes of cerebrospinal fluid vascular endothelial growth factor in adult chronic hydrocephalus patients. J Clin Neurosci 2015; 24:52-6. [PMID: 26498093 DOI: 10.1016/j.jocn.2015.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a growth factor demonstrated to be a key factor in cerebral angiogenesis and neurogenesis. It has been considered a critical component in hippocampus neurogenesis and memory formation and has been observed to increase in the rat hippocampus after exercise. We previously found increased VEGF levels in experimental chronic hydrocephalus in several brain areas and cerebrospinal fluid (CSF), suggesting a role in the adaption to chronic hypoxia. Here we investigate the ability of moderate exercise to increase CSF-VEGF levels in adult chronic hydrocephalus patients. Lumbar CSF samples were collected from 17 normal pressure hydrocephalus patients. During CSF collection, 11 patients (exercise group) underwent a standard in-room occupational therapy session; six patients (no-exercise group) did not undergo a physical therapy session. CSF-VEGF levels were evaluated for increase related to exercise and the clinical response to CSF drainage. CSF-VEGF levels in the exercise group demonstrated significant increases 1-3 hours post-exercise compared with the levels 1-2 hours pre-exercise (p=0.04), and also showed significantly higher levels than the no-exercise groups (p=0.03). The post-exercise CSF-VEGF level in the group that did not clinically improve was significantly higher than both their own pre-exercise level (p=0.02) and that seen in the clinically improving group (p=0.05) after exercise. We conclude that CSF-VEGF levels can increase after moderate exercise even in elderly hydrocephalus patients. This suggests that a potential benefit of exercise, especially in CSF drainage non-improved patients, may exist via a central VEGF mechanism.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, S-60, 9500 Euclid Avenue, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kaitlyn J Shanahan
- Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, S-60, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Leah P Shriver
- Departments of Chemistry and Biology, University of Akron, Akron, OH, USA
| | - Mark G Luciano
- Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, S-60, 9500 Euclid Avenue, Cleveland, OH, USA; Department of Neurosurgery, Phipps 126, 600 North Wolfe Street, Johns Hopkins Medical Hospital, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Nemecek A, Zimmermann H, Rübenthaler J, Fleischer V, Paterka M, Luessi F, Müller-Forell W, Zipp F, Siffrin V. Flow cytometric analysis of T cell/monocyte ratio in clinically isolated syndrome identifies patients at risk of rapid disease progression. Mult Scler 2015; 22:483-93. [DOI: 10.1177/1352458515593821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/07/2015] [Indexed: 01/10/2023]
Abstract
Background: Multiple sclerosis is a chronic inflammatory central nervous system disease diagnosed by clinical presentation and characteristic magnetic resonance imaging findings. The role of cerebrospinal fluid (CSF) analysis has been emphasized in particular in the context of differential diagnosis in patients with a first episode suggestive of multiple sclerosis. Objective: We investigated here the potential additional value of analysis of CSF cellularity by fluorescence activated cell sorting (FACS) in the setting of a routine diagnostic work-up in our inpatient clinic. Methods: CSF cells from back-up samples from patients with suspected chronic inflammatory central nervous system disorder were analyzed by FACS and correlated with clinical data, magnetic resonance imaging findings and oligoclonal band status. Results: We found distinct changes of T cell/monocyte (CD4/CD14) and B cell/monocyte (CD20/CD14) ratios between clinically isolated syndrome (CIS)/multiple sclerosis and other neurologic diseases or other inflammatory neurologic diseases. In particular, patients with a rapid transition from CIS to multiple sclerosis had an elevated CD4/CD14 ratio. A subgroup analysis showed diagnostic value of CD4/CD8 ratio in the differential diagnosis of CIS/multiple sclerosis to neurosarcoidosis. Conclusion: The diagnostic and prognostic accuracy of autoimmune neuroinflammatory diseases can be improved by FACS analysis of CSF cells.
Collapse
Affiliation(s)
- Andrea Nemecek
- Neurology Department, Johannes Gutenberg University Mainz, Germany
| | - Hilga Zimmermann
- Neurology Department, Johannes Gutenberg University Mainz, Germany
| | | | | | | | - Felix Luessi
- Neurology Department, Johannes Gutenberg University Mainz, Germany
| | | | - Frauke Zipp
- Neurology Department, Johannes Gutenberg University Mainz, Germany
| | - Volker Siffrin
- Neurology Department, Johannes Gutenberg University Mainz, Germany/Charité – Universitätsmedizin Berlin, Germany
| |
Collapse
|
11
|
Toben C, Baune BT. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes. J Neuroimmune Pharmacol 2015; 10:595-609. [PMID: 26133121 DOI: 10.1007/s11481-015-9620-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better understanding of both the neuro- degenerative and -regenerative repair functions as present within the neuroimmune network during depression. Furthermore T cells may be important players in restoration of normal behaviour and immune cell homeostasis in depression.
Collapse
Affiliation(s)
- Catherine Toben
- Discipline of Psychiatry, University of Adelaide, 5005, Adelaide, SA, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, 5005, Adelaide, SA, Australia.
| |
Collapse
|
12
|
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015; 20:928-41. [PMID: 25979470 DOI: 10.1016/j.drudis.2015.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
The choroid plexus (CP) is a highly vascularized organ located in the brain ventricles and contains a single epithelial cell layer forming the blood-cerebrospinal fluid barrier (BCSFB). This barrier is crucial for immune surveillance in health and is an underestimated gate for entry of immune cells during numerous inflammatory disorders. Several of these disorders are accompanied by disturbance of the BCSFB and increased leukocyte infiltration, which affects neuroinflammation. Understanding the mechanism of immune cell entry at the CP might lead to identification of new therapeutic targets. Here, we focus on current knowledge of leukocyte infiltration at the CP in inflammatory conditions and its therapeutic implications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
14
|
Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma. Protein Cell 2014; 5:899-911. [PMID: 25411122 PMCID: PMC4259890 DOI: 10.1007/s13238-014-0112-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.
Collapse
|
15
|
Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun 2014; 54:8-14. [DOI: 10.1016/j.jaut.2014.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
16
|
Nigim F, Critchlow JF, Schneider BE, Chen C, Kasper EM. Shunting for hydrocephalus: analysis of techniques and failure patterns. J Surg Res 2014; 191:140-7. [DOI: 10.1016/j.jss.2014.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
|
17
|
Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2013; 33:7-22. [PMID: 24357543 DOI: 10.1002/embj.201386609] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of the body's physiological repair mechanism, unless it remains unresolved and becomes pathological, as evident in the progressive nature of neurodegeneration. Based on studies from outside the central nervous system (CNS), it is now understood that the resolution of inflammation is an active process, which is dependent on well-orchestrated innate and adaptive immune responses. Due to the immunologically privileged status of the CNS, such resolution mechanism has been mostly ignored. Here, we discuss resolution of neuroinflammation as a process that depends on a network of immune cells operating in a tightly regulated sequence, involving the brain's choroid plexus (CP), a unique neuro-immunological interface, positioned to integrate signals it receives from the CNS parenchyma with signals coming from circulating immune cells, and to function as an on-alert gate for selective recruitment of inflammation-resolving leukocytes to the inflamed CNS parenchyma. Finally, we propose that functional dysregulation of the CP reflects a common underlying mechanism in the pathophysiology of neurodegenerative diseases, and can thus serve as a potential novel target for therapy.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Vascular endothelial growth factor in the CSF of elderly patients with ventriculomegaly: Variability, periodicity and levels in drainage responders and non-responders. Clin Neurol Neurosurg 2013; 115:1729-34. [DOI: 10.1016/j.clineuro.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/22/2013] [Accepted: 03/31/2013] [Indexed: 11/19/2022]
|
19
|
Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 2013; 13:206-18. [PMID: 23435332 DOI: 10.1038/nri3391] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex barriers separate immune-privileged tissues from the circulation. Here, we propose that cell entry to immune-privileged sites through barriers composed of tight junction-interconnected endothelium is associated with destructive inflammation, whereas border structures comprised of fenestrated vasculature enveloped by tightly regulated epithelium serve as active and selective immune-skewing gates in the steady state. Based on emerging knowledge of the central nervous system and information from other immune-privileged sites, we propose that these sites are endowed either with absolute endothelial-based barriers and epithelial gates that enable selective and educative transfer of trafficking leukocytes or with selective epithelial gates only.
Collapse
Affiliation(s)
- Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
20
|
Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 2012; 33:579-89. [DOI: 10.1016/j.it.2012.07.004] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022]
|
21
|
The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12:623-35. [DOI: 10.1038/nri3265] [Citation(s) in RCA: 669] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Meeker RB, Williams K, Killebrew DA, Hudson LC. Cell trafficking through the choroid plexus. Cell Adh Migr 2012; 6:390-6. [PMID: 22902764 DOI: 10.4161/cam.21054] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus is a multifunctional organ that sits at the interface between the blood and cerebrospinal fluid (CSF). It serves as a gateway for immune cell trafficking into the CSF and is in an excellent position to provide continuous immune surveillance by CD4 (+) T cells, macrophages and dendritic cells and to regulate immune cell trafficking in response to disease and trauma. However, little is known about the mechanisms that control trafficking through this structure. Three cell types within the choroid plexus, in particular, may play prominent roles in controlling the development of immune responses within the nervous system: the epithelial cells, which form the blood-CSF barrier, and resident macrophages and dendritic cells in the stromal matrix. Adhesion molecule and chemokine expression by the epithelial cells allows substantial control over the selection of cells that transmigrate. Macrophages and dendritic cells can present antigen within the choroid plexus and/or transmigrate into the cerebral ventricles to serve a variety of possible immune functions. Studies to better understand the diverse functions of these cells are likely to reveal new insights that foster the development of novel pharmacological and macrophage-based interventions for the control of CNS immune responses.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
23
|
Yang J, Dombrowski SM, Deshpande A, Krajcir N, El-Khoury S, Krishnan C, Luciano MG. Stability Analysis of Vascular Endothelial Growth Factor in Cerebrospinal Fluid. Neurochem Res 2011; 36:1947-54. [DOI: 10.1007/s11064-011-0517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2011] [Indexed: 12/12/2022]
|
24
|
de Graaf MT, Smitt PAES, Luitwieler RL, van Velzen C, van den Broek PDM, Kraan J, Gratama JW. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. CYTOMETRY PART B-CLINICAL CYTOMETRY 2011; 80:43-50. [PMID: 20632412 DOI: 10.1002/cyto.b.20542] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To use cerebrospinal fluid (CSF) immune phenotyping as a diagnostic and research tool, we have set out to establish reference values of white blood cell (WBC) subsets in CSF. METHODS We assessed the absolute numbers and percentages of WBC subsets by 6-color flow cytometry in paired CSF and blood samples of 84 individuals without neurological disease who underwent spinal anaesthesia for surgery. Leukocyte (i.e., lymphocytes, granulocytes, and monocytes), lymphocyte (i.e., T [CD4(+) and CD8(+) ], NK, NKT and B cells), T cell (i.e., naïve, central memory, effector memory, and regulatory) and dendritic cell subsets (i.e., myeloid and plasmacytoid) were studied. RESULTS CSF showed a predominance of T cells, while granulocytes, B and NK cells were relatively rare compared to blood. The majority of T cells in CSF consisted of CD4(+) T cells (∼70%), most of them (∼90%) with a central memory phenotype, while B cells were almost absent (<1%). Among the small population of dendritic cells in CSF, those of the myeloid subtype were more frequent than plasmacytoid dendritic cells (medians: 1.7% and 0.4% of leukocytes, respectively), whilst both subsets made up 0.2% of leukocytes in blood. CONCLUSIONS This study reports reference values of absolute numbers and percentages of WBC subsets in CSF, which are essential for further investigation of the immunopathogenesis of neuro-inflammatory diseases. Furthermore, the relative abundance of CD4(+) T cells, mainly with a central memory phenotype, and the presence of dendritic cells in CSF suggests an active adaptive immune response under normal conditions in the central nervous system (CNS).
Collapse
Affiliation(s)
- Marieke T de Graaf
- Department of Neurology, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Provencio JJ, Fu X, Siu A, Rasmussen PA, Hazen SL, Ransohoff RM. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care 2010; 12:244-51. [PMID: 19967568 DOI: 10.1007/s12028-009-9308-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cerebral vasospasm is a significant cause of morbidity in patients after aneurysmal subarachnoid hemorrhage (aSAH). There are few effective treatments. The search for new treatments has focused predominantly on dilating cerebral blood vessels. Growing evidence supports a role for inflammation in its pathogenesis but no potential target for intervention has emerged. METHODS CSF and clinical information from patients with aSAH were collected. Additionally, tyrosine modifications by stable isotope dilution HPLC with online tandem mass spectrometry were quantified in CSF samples. RESULTS We report an association between neutrophil accumulation in the cerebrospinal fluid of patients with aSAH and the development of vasospasm. In particular, CSF neutrophil content of >62% on the third day after aSAH is an independent predictor of the later development of vasospasm (OR 6.8, 95% CI 2.0-23.3, P = 0.002). Further, activity of myeloperoxidase and NADPH oxidase is elevated in aSAH suggesting a role for modification of CSF proteins by reactive oxidant species. CONCLUSIONS Neutrophil percentage is an independent predictor of vasospasm in aSAH patients, days prior to its onset suggesting a role of neutrophils in vasospasm. The activity of neutrophil enzymes is also increased suggesting a mechanism for blood vessel damage. Inflammation mediated by neutrophils is a potential target for therapies in vasospasm. More study is necessary to determine the mechanism by which neutrophils damage cerebral blood vessels.
Collapse
Affiliation(s)
- J J Provencio
- NB3, Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010; 120:1368-79. [PMID: 20440079 DOI: 10.1172/jci41911] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CNS is an immune-privileged environment, yet the local control of multiple pathogens is dependent on the ability of immune cells to access and operate within this site. However, inflammation of the distinct anatomical sites (i.e., meninges, cerebrospinal fluid, and parenchyma) associated with the CNS can also be deleterious. Therefore, control of lymphocyte entry and migration within the brain is vital to regulate protective and pathological responses. In this review, several recent advances are highlighted that provide new insights into the processes that regulate leukocyte access to, and movement within, the brain.
Collapse
Affiliation(s)
- Emma H Wilson
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
27
|
Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalic patients. J Proteomics 2010; 73:1156-62. [DOI: 10.1016/j.jprot.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 01/28/2023]
|
28
|
Schwartz M, Shechter R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry 2010; 15:342-54. [PMID: 20332793 DOI: 10.1038/mp.2010.31] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circulating immune cells support hippocampal neurogenesis, spatial memory, expression of brain-derived neurotrophic factor, and resilience to stress. Nevertheless, considering the immune privileged status of the central nervous system (CNS), such cells were assumed to be excluded from the healthy brain. It is evident, however, that the CNS is continuously surveyed by leukocytes, though their function is still a mystery. Coupling this routine leukocyte trafficking with the function attributed to circulating T cells in brain plasticity led us to propose here that CNS immunosurveillance is an integral part of the functioning brain. Anatomical restriction of selected self-recognizing leukocytes to the brain's borders and fluids (cerebrospinal fluid) not only supports the brain's activity, but also controls the potential aggressiveness of such cells. Accordingly, the brain's 'privilege' is its acquisition of a private peripheral immunological niche under its own control, which supports brain function. Immune malfunction may comprise a missing link between a healthy and diseased mind.
Collapse
Affiliation(s)
- M Schwartz
- The Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
29
|
Torres-Corzo JG, Tapia-Pérez JH, Sánchez-Aguilar M, Della Vecchia RR, Chalita Williams JC, Cerda-Gutiérrez R. Comparison of cerebrospinal fluid obtained by ventricular endoscopy and by lumbar puncture in patients with hydrocephalus secondary to neurocysticercosis. ACTA ACUST UNITED AC 2009; 71:376-9. [PMID: 19249584 DOI: 10.1016/j.surneu.2007.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/18/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND Compare the differences between proteins, glucose, and morphological cellular counts from ventricular cerebrospinal fluid obtained by neuroendoscopy and lumbar puncture. METHODS This was a retrospective, transversal study. From January 2003 until June 2006, 30 neuroendoscopies were performed on patients with hydrocephalus secondary to NCC. Samples of CSF were extracted by lumbar puncture and ventricular neuroendoscopy, and their levels of glucose, proteins, number of leukocytes, and morphological differences (PMN including eosinophiles, monocytes, and lymphocytes) were subsequently measured and studied. Traumatic CSF results were excluded. Twenty-five patients with histopathologic confirmation of the NCC diagnosis were analyzed. The average age of the patients was 42 years (SD, 19.8 years) and female-male ratio was 10:15. RESULTS The differences in glucose values, between lumbar and ventricular CSF, were not statistically significant-lumbar, 45.28 mg/dL and ventricular, 53.92 mg/dL (P = .129). The differences in the protein values and leukocyte counts were statistically significant (P < .05) with the highest values found in lumbar CSF. The presence of monocytes was higher than that of PMNs in both fluids (P < .05). We did not find eosinophiles in any CSF. CONCLUSIONS We did not find differences in the glucose values as described by previous studies, but our findings showed differences in the values of proteins, PMN leukocytes, and monocytes. The presence of more monocytes could be explained by their incremented activation by the parasite antigen and chronicity of the disease. Translational trials with uniform criteria are needed to determinate the immune process in the several presentations of the disease in humans.
Collapse
Affiliation(s)
- Jaime G Torres-Corzo
- Department of Neurosurgery, Hospital Central 'Dr Ignacio Morones Prieto,' Av Venustiano Carranza 2395, CP 78240 San Luis Potosí, SLP, México.
| | | | | | | | | | | |
Collapse
|
30
|
Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol 2006; 18:683-9. [PMID: 17010588 DOI: 10.1016/j.coi.2006.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/19/2006] [Indexed: 12/21/2022]
Abstract
Chemokines and their receptors are essential elements in leukocyte trafficking during health and disease. There are three (or more) distinct routes of leukocyte entry into the central nervous system (CNS), and molecular mechanisms of physiological and neuroinflammatory leukocyte recruitment to the CNS are slowly coming into view. Migration of immune cells into cerebrospinal fluid supports CNS immunosurveillance. Current knowledge of the trafficking determinants that direct the leukocyte recruitment in CNS pathology relies in large part on studies of multiple sclerosis and its models including experimental autoimmune encephalomyelitis. Overlapping molecular signals are responsible for the migration of specific cells into the CNS during pathological inflammation and host defense, raising challenges and opportunities for therapeutic manipulation.
Collapse
Affiliation(s)
- Natalia M Rebenko-Moll
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
31
|
Pedemonte E, Mancardi G, Giunti D, Corcione A, Benvenuto F, Pistoia V, Uccelli A. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol Ther 2006; 111:555-66. [PMID: 16442633 DOI: 10.1016/j.pharmthera.2005.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 11/18/2005] [Indexed: 12/25/2022]
Abstract
In this review we will discuss the unique features that make the central nervous system (CNS) a specialized microenvironment where immune responses are tightly regulated in order to properly face pathogens without damaging the neural cells. We will show how every paradigm of this theoretical model has been addressed by the scientific literature over the past decades providing new insights on the immune response within the CNS. In particular, new light has been shed on the trafficking of the immune cells inside and outside the CNS. Dendritic cells (DCs) have been described in the context of structures in direct contact with the cerebrospinal fluid (CSF) and their migration, upon antigen encounter, outside the CNS into deep cervical lymph nodes (DCLNs) has been further clarified. T-cells, B-cells, and antibody-secreting cells (ASCs) have been found in the CSF and CNS parenchymal lesions of inflammatory disorders and their phenotype depicted. Moreover, in chronically inflamed CNS, ectopic lymphoid structures have been observed and a germinal center reaction similar to the one found in peripheral lymph nodes has been described. These structures may play a role in the maintenance and expansion of the local autoimmune response. Although the complex interactions between immune and neural cells still remain far to be elucidated, the data discussed here suggest that the physiopathology of the adaptive immune response inside the CNS mimics, although in a mitigated fashion, what occurs in other organs and tissues.
Collapse
Affiliation(s)
- Enrico Pedemonte
- Neuroimmunology Unit, Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 2006; 26:485-95. [PMID: 16039904 DOI: 10.1016/j.it.2005.07.004] [Citation(s) in RCA: 458] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/02/2005] [Accepted: 07/07/2005] [Indexed: 12/21/2022]
Abstract
This review addresses current knowledge of the molecular trafficking signals involved in the migration of circulating leukocytes across the highly specialized blood-central nervous system (CNS) barriers during immunosurveillance and inflammation. In this regard, adhesion molecules and activating and chemotactic factors are also discussed and the regional variability in the brain and spinal cord parenchyma are also considered. Furthermore, direct passage into cerebrospinal fluid (CSF) is discussed, in the context of CNS immunosurveillance. The potential differences that characterize leukocyte entry into these varied anatomical sites are highlighted, with special emphasis on studies of the pathogenesis of multiple sclerosis and its animal models. An update on findings from clinical trials of natalizumab is also provided.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland.
| | | |
Collapse
|