1
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
2
|
Jakimovski D, Kolb C, Ramanathan M, Zivadinov R, Weinstock-Guttman B. Interferon β for Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a032003. [PMID: 29311124 DOI: 10.1101/cshperspect.a032003] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite that the availability of new therapeutic options has expanded the multiple sclerosis (MS) disease-modifying therapy arsenal, interferon β (IFN-β) remains an important therapy option in the current decision-making process. This review will summarize the present knowledge of IFN-β mechanism of action, the overall safety, and the short- and long-term efficacy of its use in relapsing remitting MS and clinically isolated syndromes. Data on secondary progressive MS is also provided, although no clear benefit was identified.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Channa Kolb
- Jacobs MS Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York 14202
| | - Murali Ramanathan
- Jacobs MS Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York 14202.,Department of Pharmaceutical Sciences, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York 14203.,MR Imaging Clinical Translational Research Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York 14202
| |
Collapse
|
3
|
Magner WJ, Weinstock-Guttman B, Rho M, Hojnacki D, Ghazi R, Ramanathan M, Tomasi TB. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy. J Neuroimmunol 2016; 292:68-78. [PMID: 26943961 PMCID: PMC4779496 DOI: 10.1016/j.jneuroim.2016.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target.
Collapse
Affiliation(s)
- William J Magner
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Bianca Weinstock-Guttman
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Mina Rho
- Division of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea.
| | - David Hojnacki
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Rabia Ghazi
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Murali Ramanathan
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Department of Pharmaceutical Sciences, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Thomas B Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Department of Medicine, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
4
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood) 2015; 240:1183-96. [PMID: 25577802 DOI: 10.1177/1535370214565975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiao L Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zi Y Ma
- Battalion 14 of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xing S Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Qi Y Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhong X Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
6
|
Graber JJ, Dhib-Jalbut S. Biomarkers of Interferon Beta Therapy in Multiple Sclerosis. J Interferon Cytokine Res 2014; 34:600-4. [DOI: 10.1089/jir.2013.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jerome J. Graber
- Department of Neurology, Montefiore-Einstein Medical Center, Bronx, New York
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
7
|
Banchereau R, Cepika AM, Pascual V. Systems approaches to human autoimmune diseases. Curr Opin Immunol 2013; 25:598-605. [PMID: 24055331 DOI: 10.1016/j.coi.2013.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/22/2013] [Indexed: 02/06/2023]
Abstract
Systemic autoimmune diseases result from interactions between genes and environmental triggers that lead to dysregulation of both innate and adaptive immunity. Systems biology approaches enable the global characterization of complex systems at the DNA, RNA and protein levels. Recent technological breakthroughs such as deep sequencing or high-throughput proteomics are revealing novel inflammatory pathways involved in autoimmunity. Herein, we review recent developments, challenges and promising avenues in the use of systems approaches to understand human systemic autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Romain Banchereau
- Baylor Institute for Immunology Research, 3434 Live Oak, Dallas, TX 75204, USA
| | | | | |
Collapse
|
8
|
Henig N, Avidan N, Mandel I, Staun-Ram E, Ginzburg E, Paperna T, Pinter RY, Miller A. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells. PLoS One 2013; 8:e62366. [PMID: 23626809 PMCID: PMC3633862 DOI: 10.1371/journal.pone.0062366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Background Monocytes, which are key players in innate immunity, are outnumbered by neutrophils and lymphocytes among peripheral white blood cells. The cytokine interferon-β (IFN-β) is widely used as an immunomodulatory drug for multiple sclerosis and its functional pathways in peripheral blood mononuclear cells (PBMCs) have been previously described. The aim of the present study was to identify novel, cell-specific IFN-β functions and pathways in tumor necrosis factor (TNF)-α-activated monocytes that may have been missed in studies using PBMCs. Methodology/Principal Findings Whole genome gene expression profiles of human monocytes and T cells were compared following in vitro priming to TNF-α and overnight exposure to IFN-β. Statistical analyses of the gene expression data revealed a cell-type-specific change of 699 transcripts, 667 monocyte-specific transcripts, 21 T cell-specific transcripts and 11 transcripts with either a difference in the response direction or a difference in the magnitude of response. RT-PCR revealed a set of differentially expressed genes (DEGs), exhibiting responses to IFN-β that are modulated by TNF-α in monocytes, such as RIPK2 and CD83, but not in T cells or PBMCs. Known IFN-β promoter response elements, such as ISRE, were enriched in T cell DEGs but not in monocyte DEGs. The overall directionality of the gene expression regulation by IFN-β was different in T cells and monocytes, with up-regulation more prevalent in T cells, and a similar extent of up and down-regulation recorded in monocytes. Conclusions By focusing on the response of distinct cell types and by evaluating the combined effects of two cytokines with pro and anti-inflammatory activities, we were able to present two new findings First, new IFN-β response pathways and genes, some of which were monocytes specific; second, a cell-specific modulation of the IFN-β response transcriptome by TNF-α.
Collapse
Affiliation(s)
- Noa Henig
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Mandel
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
| | - Elsebeth Staun-Ram
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elizabeta Ginzburg
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Paperna
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ron Y. Pinter
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine & Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
9
|
Achiron A, Feldman A, Magalashvili D, Dolev M, Gurevich M. Suppressed RNA-polymerase 1 pathway is associated with benign multiple sclerosis. PLoS One 2012; 7:e46871. [PMID: 23077530 PMCID: PMC3470584 DOI: 10.1371/journal.pone.0046871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/06/2012] [Indexed: 01/02/2023] Open
Abstract
Benign multiple sclerosis (BMS) occurs in about 15% of patients with relapsing-remitting multiple sclerosis (RRMS) that over time do not develop significant neurological disability. The molecular events associated with BMS are not clearly understood. This study sought to underlie the biological mechanisms associated with BMS. Blood samples obtained from a cohort of 31 patients with BMS and 36 patients with RRMS were applied for gene expression microarray analysis using HG-U133A-2 array (Affymetrix). Data were analyzed by Partek and pathway reconstruction was performed by Ingenuity for the most informative genes (MIGs). We identified a differing gene expression signature of 406 MIGs between BMS patients, mean±SE age 44.5±1.5 years, 24 females, 7 males, EDSS 1.9±0.2, disease duration 17.0±1.3 years, and RRMS patients, age 40.3±1.8 years, 24 females, 12 males, EDSS 3.5±0.2, disease duration 10.9±1.4 years. The signature was enriched by genes related RNA polymerase I (POL-1) transcription, general inflammatory response and activation of cell death. The most significant under-expressed pathway operating in BMS was the POL-1 pathway (p = 4.0*10−5) known while suppressed to activate P53 dependent apoptosis and to suppress NFκB induced inflammation. In accordance, of the 30 P53 target genes presented within the BMS signature, 19 had expression direction consistent with P53 activation. The transcripts within the pathway include POL-1 transcription factor 3 (RRN3, p = 4.8*10−5), POL-1 polypeptide D (POLR1D, p = 2.2*10−4), leucine-rich PPR-motif containing protein (LRPPRC p = 2.3*10−5), followed by suppression of the downstream family of ribosomal genes like RPL3, 6,13,22 and RPS6. In accordance POL-1 transcript and release factor PTRF that terminates POL-1 transcription, was over-expressed (p = 4.4*10−3). Verification of POL-1 pathway key genes was confirmed by qRT-PCR, and RRN3 silencing resulted in significant increase in the apoptosis level of PBMC sub-populations in RRMS patients. Our findings demonstrate that suppression of POL-1 pathway induce the low disease activity of BMS.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Neurogenomics Laboratory, Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
10
|
Pharmacogenomic update on multiple sclerosis: a focus on actual and new therapeutic strategies. THE PHARMACOGENOMICS JOURNAL 2012; 12:453-61. [PMID: 23044601 DOI: 10.1038/tpj.2012.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of central nervous system comprising several subtypes. Pharmacological treatment involves only few drugs. Among these, interferon beta (IFN-β) and glatiramer acetate were the most used. Although evidence supports the efficacy of these agents in treating MS symptoms, actual studies allowed to introduce new innovative drugs in clinical practice. Applying pharmacogenetic approach to MS, IFN-β and several other immune pathways were abundantly investigated. Numerous reports identified some promising therapy markers but only few markers have emerged as clinically useful. This may be partially due to differences in clinical and methodological criteria in the studies. Indeed, responder and non-responder definitions lack standardized clinical definition. The goal of this review is to treat advances in research on the pharmacogenetic markers of MS drugs and to highlight possible correlations between type of responses and genetic profile, with regard to clinical and methodological discrepancies in the studies.
Collapse
|
11
|
Sellebjerg F, Krakauer M, Limborg S, Hesse D, Lund H, Langkilde A, Søndergaard HB, Sørensen PS. Endogenous and recombinant type I interferons and disease activity in multiple sclerosis. PLoS One 2012; 7:e35927. [PMID: 22701554 PMCID: PMC3368920 DOI: 10.1371/journal.pone.0035927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022] Open
Abstract
Although treatment of multiple sclerosis (MS) with the type I interferon (IFN) IFN-β lowers disease activity, the role of endogenous type I IFN in MS remains controversial. We studied CD4+ T cells and CD4+ T cell subsets, monocytes and dendritic cells by flow cytometry and analysed the relationship with endogenous type I IFN-like activity, the effect of IFN-β therapy, and clinical and magnetic resonance imaging (MRI) disease activity in MS patients. Endogenous type I IFN activity was associated with decreased expression of the integrin subunit CD49d (VLA-4) on CD4+CD26(high) T cells (Th1 helper cells), and this effect was associated with less MRI disease activity. IFN-β therapy reduced CD49d expression on CD4+CD26(high) T cells, and the percentage of CD4+CD26(high) T cells that were CD49d(high) correlated with clinical and MRI disease activity in patients treated with IFN-β. Treatment with IFN-β also increased the percentage of CD4+ T cells expressing CD71 and HLA-DR (activated T cells), and this was associated with an increased risk of clinical disease activity. In contrast, induction of CD71 and HLA-DR was not observed in untreated MS patients with evidence of endogenous type IFN I activity. In conclusion, the effects of IFN-β treatment and endogenous type I IFN activity on VLA-4 expression are similar and associated with control of disease activity. However, immune-activating effects of treatment with IFN-β may counteract the beneficial effects of treatment and cause an insufficient response to therapy.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hecker M, Paap BK, Goertsches RH, Kandulski O, Fatum C, Koczan D, Hartung HP, Thiesen HJ, Zettl UK. Reassessment of blood gene expression markers for the prognosis of relapsing-remitting multiple sclerosis. PLoS One 2011; 6:e29648. [PMID: 22216338 PMCID: PMC3246503 DOI: 10.1371/journal.pone.0029648] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/02/2011] [Indexed: 01/04/2023] Open
Abstract
Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis.
Collapse
Affiliation(s)
- Michael Hecker
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Limmroth V. The interferon beta therapies for treatment of relapsing-remitting multiple sclerosis: are they equally efficacious? A comparative review of open-label studies evaluating the efficacy, safety, or dosing of different interferon beta formulations alone or in combination. Ther Adv Neurol Disord 2011; 4:281-96. [PMID: 22010041 PMCID: PMC3187676 DOI: 10.1177/1756285611413825] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interferon beta preparations are the most widely used initial therapies prescribed for patients with relapsing-remitting multiple sclerosis. Phase III studies have demonstrated comparable efficacy on clinical measures of disease activity, variable benefits on radiological measures, and good overall tolerability. Subsequent clinical studies have attempted to compare directly the three available interferon beta preparations, reporting both safety and efficacy data. We review the literature on studies evaluating interferon beta therapy for patients with relapsing-remitting multiple sclerosis, discuss reasons for discrepant findings, and assess the utility of interferon beta-based combination regimens as the focus of future studies in the increasingly complex multiple sclerosis therapy landscape.
Collapse
Affiliation(s)
- Volker Limmroth
- Department of Neurology, Cologne City Hospitals (Merheim), Ostmerheimer Strasse 200, 51109 Cologne, Germany
| |
Collapse
|
14
|
Goertsches RH, Zettl UK, Hecker M. Sieving treatment biomarkers from blood gene-expression profiles: a pharmacogenomic update on two types of multiple sclerosis therapy. Pharmacogenomics 2011; 12:423-32. [PMID: 21449680 DOI: 10.2217/pgs.10.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interferon-β (IFN-β) and glatiramer acetate are routinely used to inhibit disease activity in multiple sclerosis, but their mechanisms of action are incompletely understood. Individual treatment responses vary and candidate molecular markers that predict them have yet to be established. Why some patients respond poorly to a certain treatment while others respond well is addressed by the pharmacogenomic approach, which postulates that the molecular response to treatment correlates with the clinical effects, and thus seeks biological markers to estimate prognosis, guide therapy, comprehend the drugs' mechanisms of action and offer insights into disease pathogenesis. A poor clinical response can be owing to genetic variants in drug receptors or signaling components, or the appearance of neutralizing antibodies that interfere with the drug's binding efficacy. Independently, such mechanisms could lead to inadequate, that is to say unchanged, molecular responses, or exceedingly increased or decreased changes. By means of DNA microarray studies, various research groups endeavour to establish a clinically relevant relationship between the biological response to these drugs and treatment effects. Molecular profiles obtained in this way differ in the pattern and number of modulated genes, suggesting the existence of an individual 'drug-response fingerprint'. To further unravel the underlying regulatory interaction structure of the genes responsive to these immunotherapies represents a daunting but inevitable task. In this article, we focus on longitudinal ex vivo transcriptomic studies in multiple sclerosis and its therapy. We will discuss recurrently reported biomarker candidates, emphasizing those of immunologically meaning, and review studies with network module outputs.
Collapse
Affiliation(s)
- Robert H Goertsches
- University of Rostock, Department of Neurology, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| | | | | |
Collapse
|
15
|
Abstract
Multiple sclerosis (MS) is characterized by autoimmune inflammation and subsequent neurodegeneration. It is believed that early in the disease course, proinflammatory T cells that are activated in the periphery by antigen presentation cross the blood-brain barrier (BBB) into the CNS directed by various chemotaxic agents. However, to date, there has been no formal demonstration of a specific precipitating antigen. Once inside the CNS, activated T cells including T helper-1 (T(h)1), T(h)17, γδ and CD8+ types are believed to secrete proinflammatory cytokines. Decreased levels of T(h)2 cells also correlate with relapses and disease progression in MS, since T(h)2-derived cytokines are predominantly anti-inflammatory. In healthy tissue, inflammatory effects are opposed by specific subsets of regulatory T cells (T(regs)) including CD4+, CD25+ and FoxP3+ cells that have the ability to downregulate the activity of proinflammatory T cells, allowing repair and recovery to generally follow inflammatory insult. Given their function, the pathogenesis of MS most likely involves deficits of T(reg) function, which allow autoimmune inflammation and resultant neurodegeneration to proceed relatively unchecked. Interferons (IFNs) are naturally occurring cytokines possessing a wide range of anti-inflammatory properties. Recombinant forms of IFNβ are widely used as first-line treatment in relapsing forms of MS. The mechanism of action of IFNβ is complex, involving effects at multiple levels of cellular function. IFNβ appears to directly increase expression and concentration of anti-inflammatory agents while downregulating the expression of proinflammatory cytokines. IFNβ treatment may reduce the trafficking of inflammatory cells across the BBB and increase nerve growth factor production, leading to a potential increase in neuronal survival and repair. IFNβ can also increase the number of CD56bright natural killer cells in the peripheral blood. These cells are efficient producers of anti-inflammatory mediators, and may have the ability to curb neuron inflammation. The mechanistic effects of IFNβ manifest clinically as reduced MRI lesion activity, reduced brain atrophy, increased time to reach clinically definite MS after the onset of neurological symptoms, decreased relapse rate and reduced risk of sustained disability progression. The mechanism of action of IFNβ in MS is multifactorial and incompletely understood. Ongoing and future studies will increase our understanding of the actions of IFNβ on the immune system and the CNS, which will in turn aid advances in the management of MS.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
16
|
Killestein J, Polman CH. Determinants of interferon β efficacy in patients with multiple sclerosis. Nat Rev Neurol 2011; 7:221-8. [DOI: 10.1038/nrneurol.2011.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Vandenbroeck K, Urcelay E, Comabella M. IFN-beta pharmacogenomics in multiple sclerosis. Pharmacogenomics 2010; 11:1137-48. [PMID: 20712530 DOI: 10.2217/pgs.10.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a condition of the CNS marked by inflammation and neurodegeneration. Interferon (IFN)-beta was the first, and still is the main, immunomodulatory treatment for MS. Its clinical efficacy is limited, and a proportion of patients, ranging between 20-55%, do not respond to the therapy. Identification and subsequently, implementation in the clinic of biomarkers predictive for individual therapeutic response would facilitate improved patient care in addition to ensuring a more rational provision of this therapy. In this article, we summarize the main findings from studies addressing the pharmacogenomics of clinical response to IFN-beta in MS by either whole-genome association scans, candidate gene or transcriptomics studies. Whole-genome DNA association screens have revealed a high representation of brain-specific genes, and have hinted toward both extracellular ligand-gated ion channels and type I IFNs pathway genes as important categories of genetic IFN-beta response modifiers. One hit, glypican 5 (GPC5), was recently replicated in an independent study of IFN-beta responsiveness. Recent RNA transcriptomics studies have revealed the occurrence of a pre-existing type I IFN gene-expression signature, composed of genes that are predominantly induced by type I IFNs, as a potential contributing feature of poor response to therapy. Thus, while the outlines of a complex polygenic mechanism are gradually being uncovered, the main challenges for the near future will reside in the robust validation of identified response-modifying genes as well as in the decipherment of the mechanistic relationships between these genes and clinical response to IFN-beta.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Neurogenomiks Group, Universidad del País Vasco (UPV/EHU), Leioa, Spain.
| | | | | |
Collapse
|
18
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
19
|
Hecker M, Goertsches RH, Fatum C, Koczan D, Thiesen HJ, Guthke R, Zettl UK. Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment. THE PHARMACOGENOMICS JOURNAL 2010; 12:134-46. [PMID: 20956993 DOI: 10.1038/tpj.2010.77] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon-β (IFN-β) is one of the major drugs for multiple sclerosis (MS) treatment. The purpose of this study was to characterize the transcriptional effects induced by intramuscular IFN-β-1a therapy in patients with relapsing-remitting form of MS. By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-β administration. We identified 121 genes that were significantly up- or downregulated compared with baseline, with stronger changed expression at 1 week after start of therapy. Eleven transcription factor-binding sites (TFBS) are overrepresented in the regulatory regions of these genes, including those of IFN regulatory factors and NF-κB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene expression data and TFBS information, to reconstruct the underlying network of molecular interactions. An NF-κB-centered sub-network of genes was highly expressed in patients with IFN-β-related side effects. Expression alterations were confirmed by real-time PCR and literature mining was applied to evaluate network inference accuracy.
Collapse
Affiliation(s)
- M Hecker
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hesse D, Krakauer M, Lund H, Søndergaard H, Langkilde A, Ryder L, Sorensen P, Sellebjerg F. Breakthrough disease during interferon-β therapy in MS. Neurology 2010; 74:1455-62. [DOI: 10.1212/wnl.0b013e3181dc1a94] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Disease activity is highly variable in patients with multiple sclerosis (MS), both untreated and during interferon (IFN)-β therapy. Breakthrough disease is often regarded as treatment failure; however, apart from neutralizing antibodies (NAbs), no blood biomarkers have been established as reliable indicators of treatment response, despite substantial, biologically measurable effects. We studied the biologic response to treatment in a cohort of NAb-negative patients to test whether difference in responsiveness could segregate patients with and without breakthrough disease during therapy.Methods: Gene expression in blood cells from 23 patients with relapsing-remitting MS was analyzed by microarray and PCR. Samples were collected pretreatment and 9–12 hours after IFNβ injection at 3 and 6 months' treatment. Definition of breakthrough disease was based on the occurrence of relapses, disability progression, or subclinical activity on 3T MRI at 3 and 6 months.Results: Sixteen patients had breakthrough disease and 7 patients were stable. Microarray and PCR showed marked effects of IFNβ on gene expression profiles, but biologic responses did not differ between patients with breakthrough disease and stable patients. However, pretreatment variables did differ: patients with breakthrough disease had lower baseline IL10 expression, more gadolinium-enhancing lesions, and a higher number and volume of T2 lesions.Conclusions: Breakthrough disease during interferon (IFN)-β treatment is not paralleled by differences in biologic responsiveness to treatment in NAb-negative patients; most likely, the spontaneously occurring variation in underlying disease activity between patients causes the varying level of breakthrough disease observed in IFNβ-treated patients with multiple sclerosis.
Collapse
|
21
|
Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez P, Moeller S, Thiesen HJ, Zettl UK. Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-β-1b treatment in relapsing remitting MS. Pharmacogenomics 2010; 11:147-61. [DOI: 10.2217/pgs.09.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aims: In multiple sclerosis patients, treatment with recombinant IFN-β (rIFN-β) is partially efficient in reducing clinical exacerbations. However, its molecular mechanism of action is still under scrutiny. Materials & methods: We used DNA microarrays (Affymetrix, CA, USA) and peripheral mononuclear blood cells from 25 relapsing remitting multiple sclerosis patients to analyze the longitudinal transcriptional profile within 2 years of rIFN-β administration. Sets of differentially expressed genes were attained by applying a combination of independent criteria, thereby providing efficient data curation and gene filtering that accounted for technical and biological noise. Gene ontology term-association analysis and scientific literature text mining were used to explore evidence of gene interaction. Results: Post-therapy initiation, we identified 42 (day 2), 175 (month 1), 103 (month 12) and 108 (month 24) differentially expressed genes. Increased expression of established IFN-β marker genes, as well as differential expression of circulating IFN-β-responsive candidate genes, were observed. MS4A1 (CD20), a known target of B-cell depletion therapy, was significantly downregulated after one month. CMPK2, FCER1A, and FFAR2 appeared as hitherto unrecognized multiple sclerosis treatment-related differentially expressed genes that were consistently modulated over time. Overall, 84 interactions between 54 genes were attained, of which two major gene networks were identified at an earlier stage of therapy: the first (n = 15 genes) consisted of mostly known IFN-β-activated genes, whereas the second (n = 12) mainly contained downregulated genes that to date have not been associated with IFN-β effects in multiple sclerosis array research. Conclusion: We achieved both a broadening of the knowledge of IFN-β mechanism-of-action-related constituents and the identification of time-dependent interactions between IFN-β regulated genes.
Collapse
Affiliation(s)
- Robert H Goertsches
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18047 Rostock, Germany
- Leibniz Institute for Natural Product Research & Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Michael Hecker
- Leibniz Institute for Natural Product Research & Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany
| | | | - Steffen Moeller
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany
| | - Hans-Juergen Thiesen
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany
| | - Uwe K Zettl
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18047 Rostock, Germany
| |
Collapse
|
22
|
Serrano-Fernández P, Möller S, Goertsches R, Fiedler H, Koczan D, Thiesen HJ, Zettl UK. Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 2009; 43:172-8. [DOI: 10.3109/08916930903219040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Rudick RA, Polman CH. Current approaches to the identification and management of breakthrough disease in patients with multiple sclerosis. Lancet Neurol 2009; 8:545-59. [PMID: 19446274 DOI: 10.1016/s1474-4422(09)70082-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Disease-modifying drugs (DMDs) for relapsing-remitting multiple sclerosis (RRMS) are only partly effective -- breakthrough disease commonly occurs despite treatment. Breakthrough disease is predictive of continued disease activity and a poor prognosis. Availability of several DMDs offers the possibility of tailoring treatment to individual patients with RRMS and altering treatment in patients with breakthrough disease. However, no biological or imaging markers have been validated to guide initial treatment, markers of individual responsiveness to DMDs are scarce, and there is no class 1 evidence to guide alternative therapy in patients with breakthrough disease. In this Review, we discuss proposed strategies to monitor patients with RRMS being treated with DMDs, outline approaches to identifying therapeutic response in individual patients, review MRI and biological markers of treatment response, and summarise the role of antibodies in biological therapies. We also outline possible strategies for the management of patients with breakthrough disease and highlight areas in which research is needed.
Collapse
Affiliation(s)
- Richard A Rudick
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
24
|
Interferon-β therapy up-regulates BDNF secretion from PBMCs of MS patients through a CD40-dependent mechanism. J Neuroimmunol 2009; 211:114-9. [DOI: 10.1016/j.jneuroim.2009.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 01/10/2023]
|
25
|
Vandenbroeck K, Comabella M, Tolosa E, Goertsches R, Brassat D, Hintzen R, Infante-Duarte C, Favorov A, Escorza S, Palacios R, Oksenberg JR, Villoslada P. United Europeans for development of pharmacogenomics in multiple sclerosis network. Pharmacogenomics 2009; 10:885-94. [DOI: 10.2217/pgs.09.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, disabling disease of the CNS. A recent study has estimated the annual cost of MS in Europe at €12.5 billion. There is no definitive cure for the disease. Immunomodulatory therapies, such as IFN-β and glatiramer acetate, are only partially effective. Various new therapies in the final stages of clinical trials are being developed in the absence of efficacy biomarkers. Hence, there is a pressing need for identification of MS treatment response biomarkers. The focus of the multicenter research initiative United Europeans for the development of pharmacogenomics in MS (UEPHA*MS) is to promote and improve training opportunities in the novel supradisciplinary area of pharmacogenomics, biomarker research and systems biology applied to MS. UEPHA*MS is a Marie Curie Initial Training network funded by the 7th Framework Programme of the European Commission. The main scientific goals of this network are both to enhance our knowledge of the mechanisms determining response outcomes of existing immunomodulatory therapies and to identify novel therapeutic opportunities. UEPHA*MS is composed of 11 internationally recognized research teams from five countries with an assortment of expertise in complementary disciplines. The UEPHA*MS network will provide a coherent and internationally competitive platform for the training of young scientists based on multidisciplinary state-of-the-art laboratory-based and network-wide activities. This network will be instrumental in priming young scientists for Europe’s collective effort toward improved provision of healthcare based on personalized medicine.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Neurogenomiks Laboratory, Ikerbasque & Universidad del País Vasco (UPV/EHU), Edificio 205, Parque Tecnológico de Bizkaia, 48170 Zamudio, Spain
| | | | - Eva Tolosa
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Brassat
- Pole des Neurosciences et INSERM U563, University of Toulouse III, France
| | | | | | - Alexander Favorov
- Johns Hopkins School of Medicine, Baltimore, USA and, GosNIIGenetika, Moscow, Russia
| | | | | | | | - Pablo Villoslada
- Hospital Clinic of Barcelona – Institut for Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
26
|
Zhang F, Sriram S. Identification and characterization of the interferon-beta-mediated p53 signal pathway in human peripheral blood mononuclear cells. Immunology 2009; 128:e905-18. [PMID: 19740351 DOI: 10.1111/j.1365-2567.2009.03104.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The relationship between the p53 signal pathway and the response of human peripheral blood mononuclear cells (PBMC) to interferon (IFN)-beta has hitherto not been examined. Using an oligonucleotide microarray, we found differential expression of at least 70 genes involved in the p53 signal pathway, including p53, which regulate cell proliferation and cell death following stimulation with IFN-beta. We verified our observations on a limited set of p53-regulated genes at the transcriptional and translational levels. We also examined the consequences of the activation of the p53 signal pathway by IFN-beta in PBMC. When cultured in the presence of T-cell mitogens, IFN-beta restricted the entry of lymphocytes from the G0/G1 phase to the S phase and reduced the number of cells in the G2 phase. The addition of IFN-beta alone did not increase apoptosis. However, in the presence of actinomycin D, a DNA-damaging agent, addition of IFN-beta enhanced the susceptibility of PBMC to apoptosis. These observations suggest that, in spite of the activation of a number of mutually overlapping pathways mediating cell death, cell cycle arrest was the most evident consequence of IFN-beta signalling in PBMC.
Collapse
Affiliation(s)
- Fanglin Zhang
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|