1
|
Cho MJ, Lee HG, Yoon JW, Kim GR, Koo JH, Taneja R, Edelson BT, Lee YJ, Choi JM. Steady-state memory-phenotype conventional CD4 + T cells exacerbate autoimmune neuroinflammation in a bystander manner via the Bhlhe40/GM-CSF axis. Exp Mol Med 2023:10.1038/s12276-023-00995-1. [PMID: 37121980 DOI: 10.1038/s12276-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1β without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1β signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jae-Won Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Brian T Edelson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63119, USA
| | - You Jeong Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
2
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
3
|
Lee HG, Cho MZ, Choi JM. Bystander CD4 + T cells: crossroads between innate and adaptive immunity. Exp Mol Med 2020; 52:1255-1263. [PMID: 32859954 PMCID: PMC8080565 DOI: 10.1038/s12276-020-00486-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are the central mediators of both humoral and cellular adaptive immune responses. Highly specific receptor-mediated clonal selection and expansion of T cells assure antigen-specific immunity. In addition, encounters with cognate antigens generate immunological memory, the capacity for long-term, antigen-specific immunity against previously encountered pathogens. However, T-cell receptor (TCR)-independent activation, termed “bystander activation”, has also been found. Bystander-activated T cells can respond rapidly and secrete effector cytokines even in the absence of antigen stimulation. Recent studies have rehighlighted the importance of antigen-independent bystander activation of CD4+ T cells in infection clearance and autoimmune pathogenesis, suggesting the existence of a distinct innate-like immunological function performed by conventional T cells. In this review, we discuss the inflammatory mediators that activate bystander CD4+ T cells and the potential physiological roles of these cells during infection, autoimmunity, and cancer. Immune cells that become activated in the absence of antigen stimulation could be harnessed in the fight against infection, autoimmunity, and cancer. Je-Min Choi and colleagues from Hanyang University in Seoul, South Korea, review how the immune system can deploy helper T cells through an unusual process called bystander activation. Most T cells become activated only after receptors on their surface bind to specific cognate antigen. In contrast, bystander T cells are activated non-specifically in response to cytokines and other pro-inflammatory mediators. Studies have shown that this cell population has a variety of protective and pathogenic functions, for example, guarding against multiple sclerosis, aggravating the symptoms of parasitic infections and promoting antitumor immunity. A better understanding of these immune cells could lead to new therapeutic options for these diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Min-Zi Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Pathogenic function of bystander-activated memory-like CD4 + T cells in autoimmune encephalomyelitis. Nat Commun 2019; 10:709. [PMID: 30755603 PMCID: PMC6372661 DOI: 10.1038/s41467-019-08482-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
T cells generate antigen-specific immune responses to their cognate antigen as a hallmark of adaptive immunity. Despite the importance of antigen-specific T cells, here we show that antigen non-related, bystander memory-like CD4+ T cells also significantly contribute to autoimmune pathogenesis. Transcriptome analysis demonstrates that interleukin (IL)-1β- and IL-23-prime T cells that express pathogenic TΗ17 signature genes such as RORγt, CCR6, and granulocyte macrophage colony-stimulating factor (GM-CSF). Importantly, when co-transferred with myelin-specific 2D2 TCR-transgenic naive T cells, unrelated OT-II TCR-transgenic memory-like TH17 cells infiltrate the spinal cord and produce IL-17A, interferon (IFN)-γ, and GM-CSF, increasing the susceptibility of the recipients to experimental autoimmune encephalomyelitis in an IL-1 receptor-dependent manner. In humans, IL-1R1high memory CD4+ T cells are major producers of IL-17A and IFN-γ in response to IL-1β and IL-23. Collectively, our findings reveal the innate-like pathogenic function of antigen non-related memory CD4+ T cells, which contributes to the development of autoimmune diseases. T cells express specific T cell receptors (TCR) to recognise antigens and initiate adaptive immune responses. Here the authors show, in a mouse model of autoimmune encephalomyelitis, that memory-like CD4 T cells expressing unrelated TCR can also infiltrate the spinal cord and contribute to autoimmunity.
Collapse
|
5
|
Lopes Pinheiro MA, Kamermans A, Garcia-Vallejo JJ, van Het Hof B, Wierts L, O'Toole T, Boeve D, Verstege M, van der Pol SM, van Kooyk Y, de Vries HE, Unger WW. Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration. eLife 2016; 5. [PMID: 27336724 PMCID: PMC4959842 DOI: 10.7554/elife.13149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Trafficking of myelin-reactive CD4(+) T-cells across the brain endothelium, an essential step in the pathogenesis of multiple sclerosis (MS), is suggested to be an antigen-specific process, yet which cells provide this signal is unknown. Here we provide direct evidence that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive CD4(+) T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin, which was routed to endo-lysosomal compartment for processing in a time-dependent manner. Moreover, myelin/MHC-II complexes on inflamed BECs stimulated the trans-endothelial migration of myelin-reactive Th1 and Th17 2D2 cells, while control antigen loaded BECs did not stimulate T-cell migration. Furthermore, blocking the interaction between myelin/MHC-II complexes and myelin-reactive T-cells prevented T-cell transmigration. These results demonstrate that endothelial cells derived from the brain are capable of enhancing antigen-specific T cell recruitment.
Collapse
Affiliation(s)
- Melissa A Lopes Pinheiro
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Laura Wierts
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Daniël Boeve
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Marleen Verstege
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Susanne Ma van der Pol
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Wendy Wj Unger
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Clark AA, Nurmukhambetova S, Li X, Munger SD, Lees JR. Odorants specifically modulate chemotaxis and tissue retention of CD4+ T cells via cyclic adenosine monophosphate induction. J Leukoc Biol 2016; 100:699-709. [PMID: 27154353 DOI: 10.1189/jlb.1a0914-425rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/09/2016] [Indexed: 01/23/2023] Open
Abstract
Retention of T cells within affected tissue is a critical component of adaptive immune inflammation. However, the mechanisms involved in T cell retention remain largely undefined. Previous studies revealed the capacity of cAMP signaling to regulate immune cell migration, as well as dynamic regulation of receptors that could induce cAMP production in immune cells. The potential for cAMP to act as a retention signal has been mostly unexplored, partially as a result of this second messenger's well-characterized inhibition of effector function in immune cells. Here, we report that cAMP regulates the tissue retention of mouse T cells at concentrations well below those that inhibited proliferation or decreased acquisition of an effector phenotype. Stimulation of CD4+ T cells with odorants known to be cognate ligands for T cell-expressed olfactory receptors induced cAMP and inhibited chemokine-driven chemotaxis without decreasing T cell proliferation or effector functions. Similar effects were observed following treatment with relatively low concentrations of the cAMP analog Sp-5,6-dichloro-1-β-d-ribofuranosylbenzimidazole-3',5'-monophosphorothioate. Furthermore, pretreatment with odorants or cAMP at concentrations that did not inhibit effector function induced T cell tissue retention in mice by inhibiting chemokine-dependent T cell egress from the footpad to the draining lymph node. Together, these results suggest that odorant receptor-mediated increases in intracellular cAMP can modulate T cell tissue trafficking and may offer new therapeutic targets for controlling T cell tissue accumulation.
Collapse
Affiliation(s)
- Adam A Clark
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saule Nurmukhambetova
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xin Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Lin CC, Bradstreet TR, Schwarzkopf EA, Jarjour NN, Chou C, Archambault AS, Sim J, Zinselmeyer BH, Carrero JA, Wu GF, Taneja R, Artyomov MN, Russell JH, Edelson BT. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med 2016; 213:251-71. [PMID: 26834156 PMCID: PMC4749922 DOI: 10.1084/jem.20150568] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Lin et al. show that Bhlhe40 expression identifies encephalitogenic CD4+ T helper cells and define a pertussis toxin–IL-1–Bhlhe40 pathway active in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The features that define autoreactive T helper (Th) cell pathogenicity remain obscure. We have previously shown that Th cells require the transcription factor Bhlhe40 to mediate experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Here, using Bhlhe40 reporter mice and analyzing both polyclonal and TCR transgenic Th cells, we found that Bhlhe40 expression was heterogeneous after EAE induction, with Bhlhe40-expressing cells displaying marked production of IFN-γ, IL-17A, and granulocyte-macrophage colony-stimulating factor. In adoptive transfer EAE models, Bhlhe40-deficient Th1 and Th17 cells were both nonencephalitogenic. Pertussis toxin (PTX), a classical co-adjuvant for actively induced EAE, promoted IL-1β production by myeloid cells in the draining lymph node and served as a strong stimulus for Bhlhe40 expression in Th cells. Furthermore, PTX co-adjuvanticity was Bhlhe40 dependent. IL-1β induced Bhlhe40 expression in polarized Th17 cells, and Bhlhe40-expressing cells exhibited an encephalitogenic transcriptional signature. In vivo, IL-1R signaling was required for full Bhlhe40 expression by Th cells after immunization. Overall, we demonstrate that Bhlhe40 expression identifies encephalitogenic Th cells and defines a PTX–IL-1–Bhlhe40 pathway active in EAE.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas N Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chun Chou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Angela S Archambault
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - John H Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Lossius A, Vartdal F, Holmøy T. Vitamin D sensitive EBNA-1 specific T cells in the cerebrospinal fluid of patients with multiple sclerosis. J Neuroimmunol 2011; 240-241:87-96. [PMID: 22018702 DOI: 10.1016/j.jneuroim.2011.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/09/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
The pathogenesis of multiple sclerosis (MS) may involve intrathecal Epstein-Barr virus nuclear antigen-1 (EBNA-1) specific T cells susceptible to modulation by vitamin D. We established EBNA-1 reactive T cell lines from the cerebrospinal fluid (CSF) and blood of three MS patients and cloned EBNA-1 specific CD4+ T cells from two of these. T cell clones from CSF and blood displayed Th1 or Th17 phenotypes and were restricted by HLA-DR molecules, in one patient encoded by the DRB1*0403 or DRB1*1501 haplotypes. 1,25-dihydroxyvitamin D inhibited proliferation and suppressed secretion of IFN-γ and IL-17, irrespective of T cell origin and HLA restriction.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway.
| | | | | |
Collapse
|
9
|
Edelson BT, Bradstreet TR, KC W, Hildner K, Herzog JW, Sim J, Russell JH, Murphy TL, Unanue ER, Murphy KM. Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS One 2011; 6:e25660. [PMID: 22065991 PMCID: PMC3196467 DOI: 10.1371/journal.pone.0025660] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/08/2011] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) subsets differ in precursor cell of origin, functional properties, requirements for growth factors, and dependence on transcription factors. Lymphoid-tissue resident CD8α(+) conventional DCs (cDCs) and CD11b(low/-)CD103(+) non-lymphoid DCs are developmentally related, each being dependent on FMS-like tyrosine kinase 3 ligand (Flt3L), and requiring the transcription factors Batf3, Irf8, and Id2 for development. It was recently suggested that granulocyte/macrophage colony stimulating factor (GM-CSF) was required for the development of dermal CD11b(low/-)Langerin(+)CD103(+) DCs, and that this dermal DC subset was required for priming autoreactive T cells in experimental autoimmune encephalitis (EAE). Here, we compared development of peripheral tissue DCs and susceptibility to EAE in GM-CSF receptor deficient (Csf2rb(-/-)) and Batf3(-/-) mice. We find that Batf3-dependent dermal CD11b(low/-)Langerin(+) DCs do develop in Csf2rb(-/-) mice, but that they express reduced, but not absent, levels of CD103. Further, Batf3(-/-) mice lacking all peripheral CD11b(low/-) DCs show robust Th cell priming after subcutaneous immunization and are susceptible to EAE. Our results suggest that defective T effector priming and resistance to EAE exhibited by Csf2rb(-/-) mice does not result from the absence of dermal CD11b(low/-)Langerin(+)CD103(+) DCs.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Surface/metabolism
- Basic-Leucine Zipper Transcription Factors/metabolism
- CD11b Antigen/metabolism
- CD8 Antigens/metabolism
- Cross-Priming/drug effects
- Cytokine Receptor Common beta Subunit/deficiency
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dermis/immunology
- Dermis/pathology
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Immunization
- Integrin alpha Chains/metabolism
- Lectins, C-Type/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Myelin Proteins/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Subcutaneous Tissue/drug effects
- Subcutaneous Tissue/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wumesh KC
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kai Hildner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeremy W. Herzog
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John H. Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emil R. Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Herz J, Paterka M, Niesner RA, Brandt AU, Siffrin V, Leuenberger T, Birkenstock J, Mossakowski A, Glumm R, Zipp F, Radbruch H. In vivo imaging of lymphocytes in the CNS reveals different behaviour of naïve T cells in health and autoimmunity. J Neuroinflammation 2011; 8:131. [PMID: 21978405 PMCID: PMC3206448 DOI: 10.1186/1742-2094-8-131] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/06/2011] [Indexed: 02/08/2023] Open
Abstract
Background Two-photon laser scanning microscopy (TPLSM) has become a powerful tool in the visualization of immune cell dynamics and cellular communication within the complex biological networks of the inflamed central nervous system (CNS). Whereas many previous studies mainly focused on the role of effector or effector memory T cells, the role of naïve T cells as possible key players in immune regulation directly in the CNS is still highly debated. Methods We applied ex vivo and intravital TPLSM to investigate migratory pathways of naïve T cells in the inflamed and non-inflamed CNS. MACS-sorted naïve CD4+ T cells were either applied on healthy CNS slices or intravenously injected into RAG1 -/- mice, which were affected by experimental autoimmune encephalomyelitis (EAE). We further checked for the generation of second harmonic generation (SHG) signals produced by extracellular matrix (ECM) structures. Results By applying TPLSM on living brain slices we could show that the migratory capacity of activated CD4+ T cells is not strongly influenced by antigen specificity and is independent of regulatory or effector T cell phenotype. Naïve T cells, however, cannot find sufficient migratory signals in healthy, non-inflamed CNS parenchyma since they only showed stationary behaviour in this context. This is in contrast to the high motility of naïve CD4+ T cells in lymphoid organs. We observed a highly motile migration pattern for naïve T cells as compared to effector CD4+ T cells in inflamed brain tissue of living EAE-affected mice. Interestingly, in the inflamed CNS we could detect reticular structures by their SHG signal which partially co-localises with naïve CD4+ T cell tracks. Conclusions The activation status rather than antigen specificity or regulatory phenotype is the central requirement for CD4+ T cell migration within healthy CNS tissue. However, under inflammatory conditions naïve CD4+ T cells can get access to CNS parenchyma and partially migrate along inflammation-induced extracellular SHG structures, which are similar to those seen in lymphoid organs. These SHG structures apparently provide essential migratory signals for naïve CD4+ T cells within the diseased CNS.
Collapse
Affiliation(s)
- Josephine Herz
- Klinik für Neurologie, Universitätsklinik Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol 2010; 84:12125-38. [PMID: 20881045 DOI: 10.1128/jvi.01026-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferons (IFN-α/β) control viral infection by triggering the expression of genes that restrict transcription, translation, replication, and assembly. Many viruses induce IFN responses after recognition by cytoplasmic or endosomal RNA sensors (RIG-I-like RNA helicases [RLR] and Toll-like receptors [TLR]), which signal through the cognate adaptor signaling molecules IPS-1, TRIF, and MyD88. Recent studies have demonstrated that IPS-1-dependent induction of IFN-α/β downstream of RLR recognition restricts West Nile virus (WNV) infection in many cell types, whereas TRIF-dependent TLR3 signaling limits WNV replication in neurons. Here, we examined the contribution of MyD88 signaling to the control of WNV by evaluating IFN induction and virus replication in genetically deficient cells and mice. MyD88(-/-) mice showed increased lethality after WNV infection and elevated viral burden primarily in the brain, even though little effect on the systemic type I IFN response was observed. Intracranial inoculation studies corroborated these findings, as WNV spread more rapidly in the central nervous system of MyD88(-/-) mice, and this phenotype preceded the recruitment of inflammatory leukocytes. In vitro, increased WNV replication was observed in MyD88(-/-) macrophages and subsets of neurons but not in myeloid dendritic cells. MyD88 had an independent effect on recruitment of monocyte-derived macrophages and T cells into the brain that was associated with blunted induction of the chemokines that attract leukocytes. Our experiments suggest that MyD88 restricts WNV by inhibiting replication in subsets of cells and modulating expression of chemokines that regulate immune cell migration into the central nervous system.
Collapse
|