1
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
2
|
Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2020; 20:132-149. [PMID: 32748762 DOI: 10.2174/1871523019999200730171600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) and Kappa receptor excision circles in neonatal dried blood spots (DBS) enables early diagnosis of different types of primary immune deficiencies. Global newborn screening for PID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC, TREC/KREC combines screening, and continued challenges to implementation. OBJECTIVE To review the diagnostic performance of published articles for TREC and TREC/ KREC based NBS for PID and its different types. METHODS Different research resources were used to get an approach for the published data of TREС and KREC based NBS for PID like PubMed, Scopus, Google Scholar, Research gate EMBASE. We extracted TREC and KREC screening Publisher with years of publication, content and cut-off values, and a number of retests, repeat DBS, and referrals from the different published pilot, pilot cohort, Case series, and cohort studies. RESULTS We included the results of TREC, combined TREC/KREC system based NBS screening from different research articles, and divided these results between the Pilot studies, case series, and cohort. For each of these studies, different parameter data are excluded from different articles. Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. Individual TREC contents in all SCID patients were <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSION TREC and KREC sensitivity for typical SCID and other types of PID was 100 %. It shows its importance and anticipating the significance of implementation in different undeveloped and developed countries in the NBS program in upcoming years. Data adapting the screening algorithm for pre-term/ill infants reduce the amount of false-positive test results.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Mikhail Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Valery A Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
3
|
Abstract
The contributions of the peripheral adaptive and innate immune systems to CNS autoimmunity have been extensively studied. However, the role of thymic selection in these conditions is much less well understood. The thymus is the primary lymphoid organ for the generation of T cells; thymic mechanisms ensure that cells with an overt autoreactive specificity are eliminated before they emigrate to the periphery and control the generation of thymic regulatory T cells. Evidence from animal studies demonstrates that thymic T cell selection is important for establishing tolerance to autoantigens. However, there is a considerable knowledge gap regarding the role of thymic selection in autoimmune conditions of the human CNS. In this Review, we critically examine the current body of experimental evidence for the contribution of thymic tolerance to CNS autoimmune diseases. An understanding of why dysfunction of either thymic or peripheral tolerance mechanisms rarely leads to CNS inflammation is currently lacking. We examine the potential of de novo T cell formation and thymic selection as novel therapeutic avenues and highlight areas for future study that are likely to make these targets the focus of future treatments.
Collapse
|
4
|
A possible role of impaired cell-mediated immunity in the pathogenesis of tumefactive demyelinating lesions. Mult Scler Relat Disord 2017; 18:184-185. [DOI: 10.1016/j.msard.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022]
|
5
|
Staun-Ram E, Miller A. Effector and regulatory B cells in Multiple Sclerosis. Clin Immunol 2017; 184:11-25. [PMID: 28461106 DOI: 10.1016/j.clim.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
The role of B cells in the pathogenesis of Multiple Sclerosis (MS), an autoimmune neurodegenerative disease, is becoming eminent in recent years, but the specific contribution of the distinct B cell subsets remains to be elucidated. Several B cell subsets have shown regulatory, anti-inflammatory capacities in response to stimuli in vitro, as well as in the animal model of MS: Experimental Autoimmune Encephalomyelitis (EAE). However, the functional role of the B regulatory cells (Bregs) in vivo and specifically in the human disease is yet to be clarified. In the present review, we have summarized the updated information on the roles of effector and regulatory B cells in MS and the immune-modulatory effects of MS therapeutic agents on their phenotype and function.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
6
|
Teniente-Serra A, Grau-López L, Mansilla MJ, Fernández-Sanmartín M, Ester Condins A, Ramo-Tello C, Martínez-Cáceres E. Multiparametric flow cytometric analysis of whole blood reveals changes in minor lymphocyte subpopulations of multiple sclerosis patients. Autoimmunity 2016; 49:219-28. [PMID: 26829210 DOI: 10.3109/08916934.2016.1138271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study is to characterise the functionally relevant minor lymphocyte subpopulations in whole blood of multiple sclerosis (MS) patients and their potential utility as biomarkers for treatment follow up. MATERIAL AND METHODS Peripheral blood from 40 healthy donors (HD) and 66 MS patients [23 relapsing-remitting (RRMS) without treatment, 27 RRMS undergoing treatment (16 IFN-β, 11 natalizumab), and 16 progressive forms (eight secondary progressive and eight primary progressive)] was analysed by multiparametric flow cytometry. RESULTS Untreated MS patients showed a decrease in early effector memory (CD45RA(-)CCR7(-)CD27(+)) CD4(+) and CD8(+) T cells and an increase in Th17 lymphocytes in peripheral blood compared with HD. Regarding the effect of treatment, whereas no differences in relative percentages of cellular subpopulations were observed in patients under IFN-β treatment, those under treatment with natalizumab had an increased percentage of early effector memory CD4(+) (CD45RA(-)CCR7(-)CD27(+)), central memory CD8(+) (CD45RA(-)CCR7(+)CD27(+)) T cells, recent thymic emigrants (CD4(+) CD45RA(+)CCR7(+)CD27(+)CD31(+)PTK7(+)) and transitional B cells (CD19(+)CD27(-)CD24(hi)CD38(hi)). CONCLUSIONS Multiparametric flow cytometry analysis of whole blood is a robust, reproducible, and sensitive technology to monitor the effect of MS treatments even in minor lymphocyte subpopulations that might represent useful biomarkers of treatment response.
Collapse
Affiliation(s)
- Aina Teniente-Serra
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| | - Laia Grau-López
- c Multiple Sclerosis Unit, Department of Neurosciences. Germans Trias i Pujol University Hospital , Badalona , Barcelona , and
| | - M José Mansilla
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| | - Marco Fernández-Sanmartín
- d Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona , and
| | | | - Cristina Ramo-Tello
- c Multiple Sclerosis Unit, Department of Neurosciences. Germans Trias i Pujol University Hospital , Badalona , Barcelona , and
| | - Eva Martínez-Cáceres
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| |
Collapse
|
7
|
Schubert RD, Hu Y, Kumar G, Szeto S, Abraham P, Winderl J, Guthridge JM, Pardo G, Dunn J, Steinman L, Axtell RC. IFN-β treatment requires B cells for efficacy in neuroautoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2110-6. [PMID: 25646307 PMCID: PMC4340715 DOI: 10.4049/jimmunol.1402029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-β remains the most widely prescribed treatment for relapsing remitting multiple sclerosis. Despite widespread use of IFN-β, the therapeutic mechanism is still partially understood. Particularly, the clinical relevance of increased B cell activity during IFN-β treatment is unclear. In this article, we show that IFN-β pushes some B cells into a transitional, regulatory population that is a critical mechanism for therapy. IFN-β treatment increases the absolute number of regulatory CD19(+)CD24(++)CD38(++) transitional B cells in peripheral blood relative to treatment-naive and Copaxone-treated patients. In addition, we found that transitional B cells from both healthy controls and IFN-β-treated MS patients are potent producers of IL-10, and that the capability of IFN-β to induce IL-10 is amplified when B cells are stimulated. Similar changes are seen in mice with experimental autoimmune encephalomyelitis. IFN-β treatment increases transitional and regulatory B cell populations, as well as IL-10 secretion in the spleen. Furthermore, we found that IFN-β increases autoantibody production, implicating humoral immune activation in B cell regulatory responses. Finally, we demonstrate that IFN-β therapy requires immune-regulatory B cells by showing that B cell-deficient mice do not benefit clinically or histopathologically from IFN-β treatment. These results have significant implications for the diagnosis and treatment of relapsing remitting multiple sclerosis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Autoantibodies/biosynthesis
- Autoimmunity/drug effects
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Case-Control Studies
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Gene Expression Regulation
- Glatiramer Acetate
- Humans
- Immunosuppressive Agents/pharmacology
- Interferon-beta/pharmacology
- Interleukin-10/biosynthesis
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Peptides/pharmacology
- Signal Transduction
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
Collapse
Affiliation(s)
- Ryan D Schubert
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; Department of Neurology, University of California San Francisco, San Francisco, CA 94158; and
| | - Yang Hu
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gaurav Kumar
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Spencer Szeto
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Peter Abraham
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Johannes Winderl
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Joel M Guthridge
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gabriel Pardo
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jeffrey Dunn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
8
|
Sottini A, Serana F, Bertoli D, Chiarini M, Valotti M, Vaglio Tessitore M, Imberti L. Simultaneous quantification of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) by real-time PCR. J Vis Exp 2014:52184. [PMID: 25549107 PMCID: PMC4396956 DOI: 10.3791/52184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/10(6) cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.
Collapse
Affiliation(s)
| | | | - Diego Bertoli
- CREA, Diagnostics Department, Spedali Civili di Brescia
| | | | | | | | - Luisa Imberti
- CREA, Diagnostics Department, Spedali Civili di Brescia;
| |
Collapse
|
9
|
Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients' individual gene expression in peripheral blood. Mol Neurobiol 2013; 48:737-56. [PMID: 23636981 DOI: 10.1007/s12035-013-8463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Therapy with interferon-beta (IFN-beta) is a mainstay in the management of relapsing-remitting multiple sclerosis (MS), with proven long-term effectiveness and safety. Much has been learned about the molecular mechanisms of action of IFN-beta in the past years. Previous studies described more than a hundred genes to be modulated in expression in blood cells in response to the therapy. However, for many of these genes, the precise temporal expression pattern and the therapeutic relevance are unclear. We used Affymetrix microarrays to investigate in more detail the gene expression changes in peripheral blood mononuclear cells from MS patients receiving subcutaneous IFN-beta-1a. The blood samples were obtained longitudinally at five different time points up to 2 years after the start of therapy, and the patients were clinically followed up for 5 years. We examined the functions of the genes that were upregulated or downregulated at the transcript level after short-term or long-term treatment. Moreover, we analyzed their mutual interactions and their regulation by transcription factors. Compared to pretreatment levels, 96 genes were identified as highly differentially expressed, many of them already after the first IFN-beta injection. The interactions between these genes form a large network with multiple feedback loops, indicating the complex crosstalk between innate and adaptive immune responses during therapy. We discuss the genes and biological processes that might be important to reduce disease activity by attenuating the proliferation of autoreactive immune cells and their migration into the central nervous system. In summary, we present novel insights that extend the current knowledge on the early and late pharmacodynamic effects of IFN-beta therapy and describe gene expression differences between the individual patients that reflect clinical heterogeneity.
Collapse
|
10
|
Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 2012; 8:613-23. [PMID: 23045237 DOI: 10.1038/nrneurol.2012.203] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells and antibodies account for the most prominent immunodiagnostic feature in patients with multiple sclerosis (MS), namely oligoclonal bands. Furthermore, evidence is accumulating that B cells and antibodies contribute to MS pathogenesis in at least a subset of patients. The CNS provides a B-cell-fostering environment that includes B-cell trophic factors such as BAFF (B-cell-activating factor of the TNF family), APRIL (a proliferation-inducing ligand), and the plasma-cell survival factor CXCL12. Owing to this environment, the CNS of patients with MS is not only the target of the immunopathological process, but also becomes the site of local antibody production. B cells can increase or dampen CNS inflammation, but their proinflammatory effects seem to be more prominent in most patients, as B-cell depletion is a promising therapeutic strategy. Other therapies not primarily designed to target B cells have numerous effects on the B-cell compartment. This Review summarizes key features of B-cell biology, the role of B cells and antibodies in CNS inflammation, and current attempts to identify the targets of pathogenic antibodies in MS. We also review the effects of approved and investigational interventions-including CD20-depleting antibodies, BAFF/APRIL-depleting agents, alemtuzumab, natalizumab, FTY720, IFN-β, glatiramer acetate, steroids and plasma exchange-on B-cell immunology.
Collapse
Affiliation(s)
- Markus Krumbholz
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Munich, Germany
| | | | | | | |
Collapse
|
11
|
Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients. Clin Immunol 2012; 145:19-26. [PMID: 22892399 DOI: 10.1016/j.clim.2012.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022]
Abstract
The anti-α4 monoclonal antibody natalizumab inhibits lymphocyte extravasation into the central nervous system and increases peripheral T and B lymphocytes in multiple sclerosis patients. To investigate whether the lymphocyte accumulation was due to a higher lymphocyte production, an altered homeostasis, or a differential transmigration of lymphocyte subsets through endothelia, T-cell receptor excision circles and kappa-deleting recombination excision circles were quantified before and after treatment, T-cell receptor repertoire was analyzed by spectratyping, and T- and B-lymphocyte subset migration was studied using transwell coated with vascular and lymphatic endothelial cells. We found that the number of newly produced T and B lymphocytes is increased because of a high release and of a low propensity of naïve subsets to migrate across endothelial cells. In some patients this resulted in an enlargement of T-cell heterogeneity. Because new lymphocyte production ensures the integrity of immune surveillance, its quantification could be used to monitor natalizumab therapy safety.
Collapse
|