1
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Schellhammer L, Beffinger M, Salazar U, Laman JD, Buch T, vom Berg J. Exit pathways of therapeutic antibodies from the brain and retention strategies. iScience 2023; 26:108132. [PMID: 37915602 PMCID: PMC10616392 DOI: 10.1016/j.isci.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Treating brain diseases requires therapeutics to pass the blood-brain barrier (BBB) which is nearly impermeable for large biologics such as antibodies. Several methods now facilitate crossing or circumventing the BBB for antibody therapeutics. Some of these exploit receptor-mediated transcytosis, others use direct delivery bypassing the BBB. However, successful delivery into the brain does not preclude exit back to the systemic circulation. Various mechanisms are implicated in the active and passive export of antibodies from the central nervous system. Here we review findings on active export via transcytosis of therapeutic antibodies - in particular, the role of the neonatal Fc receptor (FcRn) - and discuss a possible contribution of passive efflux pathways such as lymphatic and perivascular drainage. We point out open questions and how to address these experimentally. In addition, we suggest how emerging findings could aid the design of the next generation of therapeutic antibodies for neurologic diseases.
Collapse
Affiliation(s)
- Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Michal Beffinger
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| | - Ulisse Salazar
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| |
Collapse
|
3
|
Inhibition of Aquaporin 4 Decreases Amyloid Aβ40 Drainage Around Cerebral Vessels. Mol Neurobiol 2020; 57:4720-4734. [PMID: 32783141 PMCID: PMC7515968 DOI: 10.1007/s12035-020-02044-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023]
Abstract
Aquaporin-4 (AQP4) is located mainly in the astrocytic end-feet around cerebral blood vessels and regulates ion and water homeostasis in the brain. While deletion of AQP4 is shown to reduce amyloid-β (Aβ) clearance and exacerbate Aβ peptide accumulation in plaques and vessels of Alzheimer's disease mouse models, the mechanism and clearing pathways involved are debated. Here, we investigated how inhibiting the function of AQP4 in healthy male C57BL/6 J mice impacts clearance of Aβ40, the more soluble Aβ isoform. Using two-photon in vivo imaging and visualizing vessels with Sulfurodamine 101 (SR101), we first showed that Aβ40 injected as a ≤ 0.5-μl volume in the cerebral cortex diffused rapidly in parenchyma and accumulated around blood vessels. In animals treated with the AQP4 inhibitor TGN-020, the perivascular Aβ40 accumulation was significantly (P < 0.001) intensified by involving four times more vessels, thus suggesting a generalized clearance defect associated with vessels. Increasing the injecting volume to ≥ 0.5 ≤ 1 μl decreased the difference of Aβ40-positive vessels observed in non-treated and AQP4 inhibitor-treated animals, although the difference was still significant (P = 0.001), suggesting that larger injection volumes could overwhelm intramural vascular clearance mechanisms. While both small and large vessels accumulated Aβ40, for the ≤ 0.5-μl volume group, the average diameter of the Aβ40-positive vessels tended to be larger in control animals compared with TGN-020-treated animals, although the difference was non-significant (P = 0.066). Using histopathology and ultrastructural microscopy, no vascular structural change was observed after a single massive dose of TGN-020. These data suggest that AQP4 deficiency is directly involved in impaired Aβ brain clearance via the peri-/para-vascular routes, and AQP4-mediated vascular clearance might counteract blood-brain barrier abnormalities and age-related vascular amyloidopathy.
Collapse
|
4
|
Neuronal low-density lipoprotein receptor-related protein 1 (LRP1) enhances the anti-apoptotic effect of intravenous immunoglobulin (IVIg) in ischemic stroke. Brain Res 2016; 1644:192-202. [DOI: 10.1016/j.brainres.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 05/12/2016] [Indexed: 11/21/2022]
|
5
|
Zhao Y, Li D, Zhao J, Song J, Zhao Y. The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci 2016; 27:623-34. [PMID: 27206317 DOI: 10.1515/revneuro-2015-0069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
AbstractThe blood-brain barrier (BBB) is a protective structure that helps maintaining the homeostasis in cerebral microenvironment by limiting the passage of molecules into the brain. BBB is formed by closely conjugated endothelial cells, with astrocytic endfeet surrounded and extracellular matrix (ECM) consolidated. Numerous neurological diseases can cause disturbance of BBB, leading to brain edema and neurological dysfunctions. The low-density lipoprotein (LDL) receptor–related protein 1 (LRP-1), a member of the LDL receptor gene family, is involved in a lot of important processes in the brain under both physiological and pathological conditions. As a membrane receptor, LRP-1 interacts with a variety of ligands and mediates the internalization of several important substances. LRP-1 is found responsible for inducing the opening of BBB following ischemic attack. It has also been reported that LRP-1 regulates several tight junction proteins and mediates the clearance of major ECM-degrading proteinases. In this review, we briefly discussed the role of LRP-1 in regulating BBB integrity by modulating tight junction proteins, endothelial cells and the remodeling of ECM.
Collapse
Affiliation(s)
- Yahui Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Dandong Li
- 2Department of Neurosurgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Junjie Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Jinning Song
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Yonglin Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
6
|
Zhang W, Zhang H, Mu H, Zhu W, Jiang X, Hu X, Shi Y, Leak RK, Dong Q, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol Dis 2016; 91:37-46. [PMID: 26921472 DOI: 10.1016/j.nbd.2016.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to protect the neonatal brain against hypoxic/ischemic (H/I) injury. However, the mechanism of n-3 PUFA-afforded neuroprotection is not well understood. One major determinant of H/I vulnerability is the permeability of the blood-brain barrier (BBB). Therefore, we examined the effects of n-3 PUFAs on BBB integrity after neonatal H/I. Female rats were fed a diet with or without n-3 PUFA enrichment from day 2 of pregnancy to 14days after parturition. H/I was introduced in 7day-old offspring. We observed relatively rapid BBB penetration of the small molecule cadaverine (640Da) at 4h post-H/I and a delayed penetration of larger dextrans (3kD-40kD) 24-48h after injury. Surprisingly, the neonatal BBB was impermeable to Evans Blue or 70kD dextran leakage for up to 48h post-H/I, despite evidence of IgG extravasation at this time. As expected, n-3 PUFAs ameliorated H/I-induced BBB damage, as shown by reductions in tracer efflux and IgG extravasation, preservation of BBB ultrastructure, and enhanced tight junction protein expression. Furthermore, n-3 PUFAs prevented the elevation in matrix metalloproteinase (MMP) activity in the brain and blood after H/I. Thus, n-3 PUFAs may protect neonates against BBB damage by blunting MMPs activation after H/I.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hui Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hongfeng Mu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen Zhu
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Yukio Takeshita
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Ube Yamaguchi Japan
| | | |
Collapse
|
8
|
Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2014; 32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
|
9
|
St-Amour I, Paré I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, Vandal M, Soulet D, Bazin R, Calon F. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J Cereb Blood Flow Metab 2013; 33:1983-92. [PMID: 24045402 PMCID: PMC3851908 DOI: 10.1038/jcbfm.2013.160] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022]
Abstract
Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets, the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood-brain barrier (BBB) of C57Bl/6 mice using complementary quantitative and qualitative methodologies. As determined by enzyme-linked immunosorbent assay, a small proportion of systemically injected IVIg was detected in the brain of mice (0.009±0.001% of injected dose in the cortex) whereas immunostaining revealed localization mainly within microvessels and less frequently in neurons. Pharmacokinetic analyses evidenced a low elimination rate constant (0.0053 per hour) in the cortex, consistent with accumulation within cerebral tissue. In situ cerebral perfusion experiments revealed that a fraction of IVIg crossed the BBB without causing leakage. A dose-dependent decrease of brain uptake was consistent with a saturable blood-to-brain transport mechanism. Finally, brain uptake of IVIg after a subchronic treatment was similar in the 3xTg-AD mouse model of Alzheimer disease compared with nontransgenic controls. In summary, our results provide evidence of BBB passage and bioavailability of IVIg into the brain in the absence of BBB leakage and in sufficient concentration to interact with the therapeutic targets.
Collapse
Affiliation(s)
- Isabelle St-Amour
- 1] Centre de Recherche du CHU de Québec, Quebec, Canada [2] Faculté de Pharmacie, Université Laval, Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, Canada [3] Département de Recherche et Développement, Héma-Québec, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res 2012; 86:1-10. [PMID: 23261753 DOI: 10.1016/j.mvr.2012.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 12/24/2022]
Abstract
Tight junctions (TJs) feature critically in maintaining the integrity of the blood-brain barrier (BBB), and undergo significant disruption during neuroinflammatory diseases. Accordingly, the expression and distribution of CLN-5, a prominent TJ protein in central nervous system (CNS) microvessels and BBB determinant, has been shown to parallel physiological and pathophysiological changes in microvascular function. However, efforts to quantify CLN-5 within the CNS microvasculature in situ, by using conventional two-dimensional immunohistochemical analysis of thin sections, are encumbered by the tortuosity of capillaries and distorted diameters of inflamed venules. Herein, we describe a novel contour-based 3D image visualization and quantification method, employing high-resolution confocal z-stacks from thick immunofluorescently-stained thoraco-lumbar spinal cord cryosections, to analyze CLN-5 along the junctional regions of different-sized CNS microvascular segments. Analysis was performed on spinal cords of both healthy mice, and mice experiencing experimental autoimmune encephalomyelitis (EAE), an animal model of the neuroinflammatory disease multiple sclerosis. Results indicated that, under normal conditions, the density of CLN-5 staining (CLN-5 intensity/ endothelial surface area) was greatest in the capillaries and smaller venules, and least in the larger venules. This heterogeneity in junctional CLN-5 staining was exacerbated during EAE, as spinal venules revealed a significant loss of junctional CLN-5 staining that was associated with focal leukocyte extravasation, while adjacent capillaries exhibited neither CLN-5 loss nor infiltrating leukocytes. However, despite only venules displaying these behaviors, both capillaries and venules evidenced leakage of IgG during disease, further underscoring the heterogeneity of the inflammatory response in CNS microvessels. This method should be readily adaptable to analyzing other junctional proteins of the CNS and peripheral microvasculature, and serve to highlight their role(s) in health and disease.
Collapse
Affiliation(s)
- Debayon Paul
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | |
Collapse
|