1
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Schirò G, Iacono S, Ragonese P, Aridon P, Salemi G, Balistreri CR. A Brief Overview on BDNF-Trk Pathway in the Nervous System: A Potential Biomarker or Possible Target in Treatment of Multiple Sclerosis? Front Neurol 2022; 13:917527. [PMID: 35911894 PMCID: PMC9332890 DOI: 10.3389/fneur.2022.917527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
The growing incidence of neurodegenerative disorders in our populations is leading the research to identify potential biomarkers and targets for facilitating their early management and treatments. Biomarkers represent the crucial indicators of both physiological and pathological processes. Specific changes in molecular and cellular mechanisms of physiological processes result in biochemical alterations at systemic level, which can give us comprehensive information regarding the nature of any disease. In addition, any disease biomarker should be specific and reliable, able to consent of distinguishing the physiological condition of a tissue, organ, or system from disease, and be diverse among the various diseases, or subgroups or phenotypes of them. Accordingly, biomarkers can predict chances for diseases, facilitate their early diagnosis, and set guidelines for the development of new therapies for treating diseases and disease-making process. Here, we focus our attention on brain neurotrophic factor (BDNF)–tropomyosin receptor kinase (Trk) pathway, describing its multiple roles in the maintenance of central nervous system (CNS) health, as well as its implication in the pathogenesis of multiple sclerosis (MS). In addition, we also evidence the features of such pathway, which make of it a potential MS biomarker and therapeutic target.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Salvatore Iacono
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Paolo Ragonese
| | - Paolo Aridon
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Giuseppe Salemi
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Carmela Rita Balistreri ; orcid.org/0000-0002-5393-1007
| |
Collapse
|
3
|
Yalachkov Y, Anschütz V, Jakob J, Schaller-Paule MA, Schäfer JH, Reiländer A, Friedauer L, Behrens M, Steffen F, Bittner S, Foerch C. Brain-derived neurotrophic factor and neurofilament light chain in cerebrospinal fluid are inversely correlated with cognition in Multiple Sclerosis at the time of diagnosis. Mult Scler Relat Disord 2022; 63:103822. [DOI: 10.1016/j.msard.2022.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
|
4
|
Hao W, Luo Q, Menger MD, Fassbender K, Liu Y. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase. Front Immunol 2021; 12:792465. [PMID: 34975892 PMCID: PMC8716455 DOI: 10.3389/fimmu.2021.792465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease driven by T and B lymphocytes. The remyelination failure and neurodegeneration results in permanent clinical disability in MS patients. A desirable therapy should not only modulate the immune system, but also promote neuroprotection and remyelination. To investigate the neuroprotective effect of CD52 antibody in MS, both C57BL/6J and SJL mice with experimental autoimmune encephalomyelitis (EAE) were treated with CD52 antibody at the peak of disease. Treatment with CD52 antibody depleted T but not B lymphocytes in the blood, reduced the infiltration of T lymphocytes and microglia/macrophages in the spinal cord. Anti-CD52 therapy attenuated EAE scores during the recovery phase. It protected neurons immediately after treatment (within 4 days) as shown by reducing the accumulation of amyloid precursor proteins. It potentially promoted remyelination as it increased the number of olig2/CC-1-positive mature oligodendrocytes and prevented myelin loss in the following days (e.g., 14 days post treatment). In further experiments, EAE mice with a conditional knockout of BDNF in neurons were administered with CD52 antibodies. Neuronal deficiency of BDNF attenuated the effect of anti-CD52 treatment on reducing EAE scores and inflammatory infiltration but did not affect anti-CD52 treatment-induced improvement of myelin coverage in the spinal cord. In summary, anti-CD52 therapy depletes CD4-positive T lymphocytes, prevents myelin loss and protects neurons in EAE mice. Neuronal BDNF regulates neuroprotective and anti-inflammatory effect of CD52 antibody in EAE mice.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antibodies/pharmacology
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD52 Antigen/antagonists & inhibitors
- CD52 Antigen/immunology
- CD52 Antigen/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/immunology
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Remyelination/drug effects
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Mice
Collapse
Affiliation(s)
- Wenlin Hao
- Department of Neurology, Saarland University, Homburg, Germany
- Department of Neurology, Diakonie Klinikum Neunkirchen, Neunkirchen, Germany
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg, Germany
| | - Michael D. Menger
- Department of Experimental Surgery, Saarland University, Homburg, Germany
| | | | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Cao P, Zhang H, Meng H, Cheng Y, Xu H, Zang S, Li Z, Cui J, Li Y. Celecoxib Exerts a Therapeutic Effect Against Demyelination by Improving the Immune and Inflammatory Microenvironments. J Inflamm Res 2020; 13:1043-1055. [PMID: 33293848 PMCID: PMC7718997 DOI: 10.2147/jir.s282128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background The myelin sheath can be damaged by genetic and/or environmental factors, leading to demyelinating diseases, for which effective treatments are lacking. Recently, cyclooxygenase-2 (COX-2) overexpression was detected in demyelinating lesions both in patients and animal models, opening an avenue for promoting endogenous remyelination. The aim of this study was to investigate the therapeutic effect of celecoxib, a selective COX-2 inhibitor, against demyelination in a zebrafish model. Methods The biotoxicity of celecoxib was evaluated on zebrafish embryos. Metronidazole was used to deplete the oligodendrocytes in Tg (mbp:nfsB-egfp) transgenic fish. Celecoxib was then administered both in larvae and adults. The regeneration of the myelin sheath and the underlying mechanisms were explored by immunohistochemistry, flow cytometry, Western blot analysis, quantitative real-time polymerase chain reaction, and behavioral test. Results Celecoxib had low in vivo toxicity. A stable and practical demyelination model was established by metronidazole induction. Following celecoxib treatment, the number of oligodendrocytes was increased significantly and the concentric structure of the myelin sheath reappeared. The locomotor ability was notably improved and was close to its physiological levels. The expression of arg1, mrc1, il-10, and il-4 was upregulated, while that of il-1β, il-12, tnf-α, il-6, caspase-3 and caspase-7 was downregulated. Conclusion Inhibition of COX-2 contributed to the transformation of microglia/macrophages from the M1 to the M2 phenotype, improved the inflammatory microenvironment, and suppressed caspase-dependent apoptosis, thus exerting a therapeutic effect against demyelination.
Collapse
Affiliation(s)
- Peipei Cao
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huiling Meng
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yajia Cheng
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Haiqi Xu
- Faculty of Life Science, University of Liverpool, Liverpool, UK
| | - Siwen Zang
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Jianlin Cui
- Nankai University School of Medicine, Tianjin, People's Republic of China.,Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yuhao Li
- Nankai University School of Medicine, Tianjin, People's Republic of China.,Department of Pathology, Nankai University School of Medicine, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Alizadeh-Fanalou S, Alian F, Mohammadhosayni M, Rahban D, Abbasi Ghasem Kheyli P, Ahmadi M. Dysregulation of microRNAs regulating survivin in CD4+ T cells in multiple sclerosis. Mult Scler Relat Disord 2020; 44:102303. [PMID: 32599467 DOI: 10.1016/j.msard.2020.102303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Impaired elimination mechanisms of the autoreactive lymphocytes, like T lymphocytes, via apoptosis may be the cause of continues inflammatory state in multiple sclerosis (MS). BIRC5 gene codify for the survivin, which participates in the modulation of apoptosis and cell survival. The objective of this study was investigation of the role of important confirmed miRNAs, including miR-335, miR-485, miR-542, and miR-708, in the regulation of survivin mRNA in the CD4+ T cells of MS cases. METHODS In this study, 50 RRMS patients as well as 50 healthy matched controls were recruited. The peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples and CD4+ T cells were prepared. After that, RNA was extracted, cDNA was synthesized, and the expression levels of miR-335, miR-485, miR-542, and miR-708 were measured using Real-time PCR. Moreover, the mRNA expression of survivin was detected. Serum level of survivin was detected using ELISA. RESULTS The mRNA of survivin was 2-folds upregulated in the CD4+ T cells from MS patients in comparison to the healthy controls (P = 0.0053). Serum level of survivin was higher in patients than controls. There was statistically significant downregulation of miR-485 (P = 0.001) and miR-708 (P = 0.011) in CD4+ T cells of patients compared with controls. The miR-485 downregulation had statistically significant correlation with the mRNA expression and serum level of survivin. CONCLUSION miRNAs play a role in the regulation of survivin, and therefore apoptosis of CD4+ T cells, and hence are probably participating in a persistent inflammatory condition in MS patients.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Poursina St., Tehran, Iran.
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Daneshghah St., Imam Reza Hospital, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Rahban D, Mohammadi F, Alidadi M, Ghantabpour T, Kheyli PAG, Ahmadi M. Genetic polymorphisms and epigenetic regulation of survivin encoding gene, BIRC5, in multiple sclerosis patients. BMC Immunol 2019; 20:30. [PMID: 31438837 PMCID: PMC6704704 DOI: 10.1186/s12865-019-0312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 02/04/2023] Open
Abstract
Background The persistent the inflammatory condition in multiple sclerosis (MS) may due to the aberrant regulation of the elimination of the pathogenic autoreactive lymphocytes through apoptosis. Survivin, encoded by the BIRC5 gene, has been indicated to be involved in the regulation of apoptosis. This survey intended to investigate the genetic and microRNA mediated regulation of survivin in relapsing-remitting MS (RRMS) disease. Results It was observed that the C allele (OR = 1.38, 95% CI = 1.05–1.348, P = 0.022) and CC genotype (OR = 1.84, 95% CI = 1.06–3.19; P = 0.029) in the rs9904341 polymorphism increased the disease risk. Furthermore, miR-34a was significantly downregulated (Fold change = 0.41, P = 0.001) in the PBMCs from RRMS subjects. Survivin mRNA expression in PBMCs and serum survivin level were increased in RRMS patients in comparison to the controls. Downregulation of miR-34a was negatively correlated with increased survivin level. Conclusion Although the genetic polymorphism of BIRC5 gene was associated with the disease risk, miR-34a was suggested to be involved in the regulation of survivin in the RRMS patients.
Collapse
Affiliation(s)
- Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Forogh Mohammadi
- Agriculture faculty, Department of Veterinary, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mehdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantabpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Daneshghah St., Imam Reza Hospital, Tabriz, Iran. .,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Basnyat P, Sumelahti ML, Lehtimäki T, Elovaara I, Hagman S. Gene expression profiles of TNF-like cytokine 1A (TL1A) and its receptors death receptor 3 (DR3) and decoy receptor 3 (DcR3) in multiple sclerosis. J Neuroimmunol 2019; 335:577020. [PMID: 31445379 DOI: 10.1016/j.jneuroim.2019.577020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
TL1A/DR3/DcR3 pathway is an important mediator of inflammatory responses and contributes to the pathogenesis of several chronic inflammatory diseases. Therefore, we analysed PBMC gene expression of these molecules in 30 relapsing-remitting multiple sclerosis (RRMS) patients, 8 secondary progressive MS (SPMS), 9 primary progressive MS (PPMS), 11 clinically isolated syndrome (CIS) patients, and 16 healthy controls (HCs), to evaluate their biomarker potential in MS. The results showed significant decrease in TL1A expression in RRMS compared to other study groups. TL1A as a marker of inflammation, we found its higher expression among treatment näive RRMS patients as compared to HCs and among patients who were treated with DMTs. Moreover, TL1A expression was found to be associated with the clinical and MRI findings of MS patients suggesting its possible involvement in the establishment or preservation of immune system homeostasis or in the regulation of inflammatory activity. Taken together, these findings suggest the TL1A should be evaluated further for its potential as a candidate biomarker of inflammatory activity and the marker of therapeutic response to immunomodulatory treatments in MS.
Collapse
Affiliation(s)
- Pabitra Basnyat
- Neuroimmunology Unit, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Marja-Liisa Sumelahti
- Neuroimmunology Unit, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Department of Neurology, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Irina Elovaara
- Neuroimmunology Unit, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Department of Neurology, Tampere University Hospital, Tampere, Finland
| | - Sanna Hagman
- Neuroimmunology Unit, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Neuro Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
9
|
Omura S, Sato F, Martinez NE, Park AM, Fujita M, Kennett NJ, Cvek U, Minagar A, Alexander JS, Tsunoda I. Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis. Front Immunol 2019; 10:516. [PMID: 30941144 PMCID: PMC6434997 DOI: 10.3389/fimmu.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Nikki J Kennett
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Urška Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
10
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
11
|
SncRNA (microRNA &snoRNA) opposite expression pattern found in multiple sclerosis relapse and remission is sex dependent. Sci Rep 2016; 6:20126. [PMID: 26831009 PMCID: PMC4735588 DOI: 10.1038/srep20126] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/21/2015] [Indexed: 11/08/2022] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory and degenerative disease that causes neurological disability. It affects young adults and its prevalence is higher in women. The most common form is manifested as a series of acute episodes of neurological disability (relapses) followed by a recovery phase (remission). Recently, non-coding RNAs have emerged as new players in transcriptome regulation, and in turn, they could have a significant role in MS pathogenesis. In this context, our aim was to investigate the involvement of microRNAs and snoRNAs in the relapse-remission dynamics of MS in peripheral blood leucocytes, to shed light on the molecular and regulatory mechanisms that underlie this complex process. With this approach, we found that a subset of small non-coding RNAs (sncRNA) is altered in relapse and remission, revealing unexpected opposite changes that are sex dependent. Furthermore, we found that a relapse-related miRNA signature regulated general metabolism processes in leucocytes, and miRNA altered in remission are involved in the regulation of innate immunity. We observed that sncRNA dysregulation is different in relapse and remission leading to differences in transcriptome regulation, and that this process is sex dependent. In conclusion, relapse and remission have a different molecular background in men and women.
Collapse
|
12
|
Macchi B, Marino-Merlo F, Nocentini U, Pisani V, Cuzzocrea S, Grelli S, Mastino A. Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol 2015; 287:80-7. [PMID: 26439966 DOI: 10.1016/j.jneuroim.2015.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is a complex, multifactorial disease associated with damage to the axonal myelin sheaths and neuronal degeneration. The pathognomonic event in MS is oligodendrocyte loss accompanied by axonal damage, blood-brain barrier leakage, inflammation and infiltration of immune cells. The etiopathogenesis of MS is far from being elucidated. However, increasing evidence suggests that the inflammatory and apoptotic responses, occurring in patients either at the peripheral level or the central nervous system (CNS), can play a role. In this review, we give a comprehensive picture of general aspects of inflammation and apoptosis in MS, with special emphasis on the until now not well highlighted possible links between phenomena relevant to these aspects occurring in either the periphery or in the CNS during MS.
Collapse
Affiliation(s)
- Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Ugo Nocentini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Valerio Pisani
- I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy; The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
13
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
14
|
Hagman S, Kolasa M, Basnyat P, Helminen M, Kähönen M, Dastidar P, Lehtimäki T, Elovaara I. Analysis of apoptosis-related genes in patients with clinically isolated syndrome and their association with conversion to multiple sclerosis. J Neuroimmunol 2015; 280:43-8. [PMID: 25773154 DOI: 10.1016/j.jneuroim.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
To analyse whether the expression of apoptotic transcripts is associated with the conversion from clinically isolated syndrome (CIS) to multiple sclerosis (MS). Eleven candidate transcripts belonging to the death receptor pathway, BCL-2, the inflammasome complex and NF-ΚB family were studied in the nonconverting and converting CIS patients during the four-year follow-up period. Conversion to MS was associated with marked variability in the expression of proapoptotic genes that were linked to TGF-B1 gene levels. The predominant expression of proapoptotic genes in patients with CIS suggests an increased potential to undergo apoptosis with the goal of terminating immune responses and regulating immune system homeostasis.
Collapse
Affiliation(s)
- Sanna Hagman
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | - Marcin Kolasa
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Pabitra Basnyat
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mika Helminen
- Science Centre, Pirkanmaa Hospital District and School of Health Sciences, University of Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere Medical School, Finland
| | - Prasun Dastidar
- Medical Imaging Centre, Department of Diagnostic Radiology, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, Tampere, Finland
| | - Irina Elovaara
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland; Department of Neurology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
15
|
Rossi S, Studer V, Motta C, Germani G, Macchiarulo G, Buttari F, Mancino R, Castelli M, De Chiara V, Weiss S, Martino G, Furlan R, Centonze D. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation 2014; 11:32. [PMID: 24548694 PMCID: PMC3975953 DOI: 10.1186/1742-2094-11-32] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Absence of clinical and radiological activity in relapsing–remitting multiple sclerosis (RRMS) is perceived as disease remission. We explored the role of persisting inflammation during remission in disease evolution. Methods Cerebrospinal fluid (CSF) levels of interleukin 1β (IL-1β), a major proinflammatory cytokine, were measured in 170 RRMS patients at the time of clinical and radiological remission. These patients were then followed up for at least 4 years, and clinical, magnetic resonance imaging (MRI) and optical coherence tomography (OCT) measures of disease progression were recorded. Results Median follow-up of RRMS patients was 5 years. Detection of CSF IL-1β levels at the time of remission did not predict earlier relapse or new MRI lesion formation. Detection of IL-1β in the CSF was instead associated with higher progression index (PI) and Multiple Sclerosis Severity Scale (MSSS) scores at follow-up, and the number of patients with sustained Expanded Disability Status Scale (EDSS) or Multiple Sclerosis Functional Composite worsening at follow-up was higher in individuals with detectable levels of IL-1β. Patients with undetectable IL-1β in the CSF had significantly lower PI and MSSS scores and a higher probability of having a benign MS phenotype. Furthermore, patients with undetectable CSF levels of IL-1β had less retinal nerve fiber layer thickness and macular volume alterations visualized by OCT compared to patients with detectable IL-1β. Conclusions Our results suggest that persistence of a proinflammatory environment in RRMS patients during clinical and radiological remission influences midterm disease progression. Detection of IL-1β in the CSF at the time of remission appears to be a potential negative prognostic factor in RRMS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
16
|
Saresella M, Gatti A, Tortorella P, Marventano I, Piancone F, La Rosa F, Caputo D, Rovaris M, Biasin M, Clerici M. Toll-like receptor 3 differently modulates inflammation in progressive or benign multiple sclerosis. Clin Immunol 2013; 150:109-20. [PMID: 24334148 DOI: 10.1016/j.clim.2013.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 02/02/2023]
Abstract
TLR-dependent signal transduction pathways were analyzed in patients with a diagnosis of either relapsing-remitting (RRMS), secondary progressive (PMS) or benign (BMS) MS and healthy controls (HC). Prototypical TLR molecules expressed either on the cell surface (TLR4) or intracellularly (TLR3) were stimulated with specific antigens (LPS and poly I:C, respectively). Expression of factors involved in TLR signaling cascades, production of downstream immune mediators and TLR expression were evaluated. Results showed that, whereas LPS-stimulation of TLR4 had a marginal effect on cell activation, poly I:C-stimulated TLR3 expression on immune cells was significantly increased in PMS and BMS compared to HC. This was associated with a higher responsiveness to poly I:C that resulted in the activation of the TLR3-mediated pathway and the production of inflammatory cytokines in PMS and, in contrast, in the up-regulation of a peculiar mosaic of inflammation-dampening genes in BMS. Results herein might explain different MS disease phenotypes.
Collapse
Affiliation(s)
| | - Andrea Gatti
- Don C. Gnocchi Foundation, Pzza Morandi, 3, 20121 Milano, Italy
| | | | | | | | | | - Domenico Caputo
- Don C. Gnocchi Foundation, Pzza Morandi, 3, 20121 Milano, Italy
| | - Marco Rovaris
- Don C. Gnocchi Foundation, Pzza Morandi, 3, 20121 Milano, Italy
| | - Mara Biasin
- Department of Clinical Sciences, University of Milano, 20100 Milano, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation, Pzza Morandi, 3, 20121 Milano, Italy; Department of Physiopathology and Transplants, University of Milano, 20100 Milano, Italy.
| |
Collapse
|
17
|
Mancuso R, Saresella M, Hernis A, Agostini S, Piancone F, Caputo D, Maggi F, Clerici M. Torque teno virus (TTV) in multiple sclerosis patients with different patterns of disease. J Med Virol 2013; 85:2176-83. [DOI: 10.1002/jmv.23707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Simone Agostini
- Don C. Gnocchi Foundation; ONLUS; Milan Italy
- Department of Physiopathology and Transplantation; University of Milan; Milan Italy
| | - Federica Piancone
- Don C. Gnocchi Foundation; ONLUS; Milan Italy
- Department of Physiopathology and Transplantation; University of Milan; Milan Italy
| | | | - Fabrizio Maggi
- Department of Translational Research and New Technologies in Medicine and Surgery, Virology Unit; Pisa University Hospital (AOUP); University of Pisa; Pisa Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation; ONLUS; Milan Italy
- Department of Physiopathology and Transplantation; University of Milan; Milan Italy
| |
Collapse
|
18
|
Nickles D, Chen HP, Li MM, Khankhanian P, Madireddy L, Caillier SJ, Santaniello A, Cree BAC, Pelletier D, Hauser SL, Oksenberg JR, Baranzini SE. Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Hum Mol Genet 2013; 22:4194-205. [PMID: 23748426 DOI: 10.1093/hmg/ddt267] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). It is characterized by the infiltration of autoreactive immune cells into the CNS, which target the myelin sheath, leading to the loss of neuronal function. Although it is accepted that MS is a multifactorial disorder with both genetic and environmental factors influencing its development and course, the molecular pathogenesis of MS has not yet been fully elucidated. Here, we studied the longitudinal gene expression profiles of whole-blood RNA from a cohort of 195 MS patients and 66 healthy controls. We analyzed these transcriptomes at both the individual transcript and the biological pathway level. We found 62 transcripts to be significantly up-regulated in MS patients; the expression of 11 of these genes was counter-regulated by interferon treatment, suggesting partial restoration of a 'healthy' gene expression profile. Global pathway analyses linked the proteasome and Wnt signaling to MS disease processes. Since genotypes from a subset of individuals were available, we were able to identify expression quantitative trait loci (eQTL), a number of which involved two genes of the MS gene signature. However, all these eQTL were also present in healthy controls. This study highlights the challenge posed by analyzing transcripts from whole blood and how these can be mitigated by using large, well-characterized cohorts of patients with longitudinal follow-up and multi-modality measurements.
Collapse
|