1
|
Pairo Z, Parnow A, Sari Aslani P, Mohammadi P, Mirzaeei S, Mohr M. Exercise training reduces systemic inflammation and improves general health status in female migraineurs: a randomised controlled trail. Eur J Appl Physiol 2024; 124:1397-1408. [PMID: 38043087 DOI: 10.1007/s00421-023-05371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES The objectives of this study were to assess the effect of 8 weeks of moderate-intensity aerobic training on permeability inflammatory indicators of matrix metalloproteinases (MMPs) and specific tissue inhibitors of MMPs in female migraineurs. METHODS Female migraineurs (n = 28, age 32 ± 6) were randomised into two groups: migraine with exercise training (EXE + Mig, n = 13) and migraine without exercise training (NON-EXE + Mig, n = 15). Matched healthy women were also recruited as a healthy control group (CON, n = 15). The EXE-Mig group performed 8 weeks of aerobic training. Pre and post intervention, serum matrix metalloproteinases (MMP-2 and 9) and specific tissue inhibitors of MMPs (TIMP-1 and 2) were measured. In addition, body composition indices and VO2max were determined. RESULTS Exercise training reduced serum MMP-9 in female migraineurs with between-group changes and a time x group interaction (p < 0.05). In addition, exercise training reduced the serum MMP-9/TIMP-1 ratio in female migraineurs with between-group changes and time x group interaction (p < 0.05). However, no training-induced effect was observed in serum TIMP-1, TIMP-2, MMP-2 contents (p > 0.05) and MMP-2/TIMP-2 ratio (p > 0.05). Finally, exercise training reduced body fat content, WHR and BMI, and improved VO2max (p < 0.01). CONCLUSIONS Our results demonstrated beneficial effects of aerobic exercise training on some circulatory inflammation factors (MMP9, MMP-9/TIMP-1) and some health indicators in female migraineurs, suggesting that such training can be employed as a non-pharmacological therapeutic method.
Collapse
Affiliation(s)
- Zahra Pairo
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, Iran
| | - Abdolhossein Parnow
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, Iran.
| | - Payam Sari Aslani
- Department of Neurology, University of Medical Sciences, Kermanshah, Iran
| | - Payam Mohammadi
- Department of Neurology, University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Department of Pharmaceutics, University of Medical Sciences, Kermanshah, Iran
| | - Magni Mohr
- Centre of Health Sciences, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Hashemi S, Saadat P, Gorgani-Firouzjaee T, Ferdosi-Shahandashti E, Jafarzadeh J. Potential genetic polymorphism of matrix metalloproteinase (MMP)-9 in Iranian migraine patients with Toxoplasma gondii infection. Parasitol Res 2024; 123:140. [PMID: 38386175 DOI: 10.1007/s00436-024-08156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that causes neuroinflammation in the brain and a constant need for peripheral leukocyte migration. Matrix metalloproteinase 9 (MMP-9) can play a major role in this neuroinflammation and be implicated in some neurological disorders, such as migraines. Therefore, the genetic polymorphism evaluation of MMP-9 in migraine patients with T. gondii infection was performed. One hundred fourteen migraine patients and 114 healthy controls were evaluated for the presence of anti-Toxoplasma IgG antibodies. Seventy-two migraine patients and 40 healthy controls were randomly selected for assessment of the MMP 9-1562C/T genetic polymorphism. In the preliminary examination, 61 (53.5%) migraine patients and 43 (37.3%) healthy controls were positive for IgG antibodies, with a significant association between T. gondii seropositivity and migraine (OR = 1.90; 95% CI = 1.21-3.223; P = 0.012). Genetic distribution for the polymorphism was not in Hardy-Weinberg equilibrium in cases but showed no significant variation in control groups (P = 0.03 and P = 0.180, respectively). A significant preponderance of the CT + TT genotype was found in migraine subjects compared to controls (P = 0.042) (OR, 1.77, CI, 1.013-2.229). The homozygote muted allele TT had a higher rate in migraine patients (6.9%). There were significant differences in CT + TT genotype between T. gondii positive and negative migraine patients (P = 0.024), but T allele frequencies had no significant variation (OR 1.7 CI, 1.084-2.44 and 0.42 CI, 0.044-3.97, respectively). In conclusion, the results may provide the first evidence for the involvement of the MMP-9 gene polymorphism in the mechanism of migraine pathology following Toxoplasma infection.
Collapse
Affiliation(s)
- Sepideh Hashemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | | | - Jalal Jafarzadeh
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T, Suzuki S, Morichi S, Watanabe Y, Ishida Y, Go S, Oana S, Kashiwagi Y, Kawashima H. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int J Mol Sci 2021; 22:ijms22168929. [PMID: 34445635 PMCID: PMC8396312 DOI: 10.3390/ijms22168929] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1β, and experimental findings involving IL-1β and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1β/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.
Collapse
|
5
|
Persistent Post-Traumatic Headache and Migraine: Pre-Clinical Comparisons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072585. [PMID: 32283843 PMCID: PMC7177371 DOI: 10.3390/ijerph17072585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Background: Oftentimes, persistent post traumatic headache (PPTH) and migraine are phenotypically similar and the only clinical feature that differentiate them is the presence of a mild or moderate traumatic brain injury (mTBI). The aim of this study is to describe the differences in brain area and in biochemical cascade after concussion and to define the efficacy and safety of treatments in use. Methods: Sources were chosen in according to the International Classification of Headache Disorder (ICHD) criteria. Results: The articles demonstrated a significant difference between PPTH and migraine regarding static functional connectivity (sFC) and dynamic functional connectivity (dFC) in brain structure that could be used for exploring the pathophysiological mechanisms in PPTH. Many studies described a cascade of neuro-metabolic changes that occur after traumatic brain injury. These variations are associated to the mechanism occurring when developing a PPTH. Conclusions: The state of art of this important topic show how although the mechanisms underlying the development of the two different diseases are different, the treatment of common migraine is efficacious in patients that have developed a post traumatic form.
Collapse
|
6
|
Ashina H, Porreca F, Anderson T, Amin FM, Ashina M, Schytz HW, Dodick DW. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol 2019; 15:607-617. [DOI: 10.1038/s41582-019-0243-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/01/2023]
|
7
|
Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab 2019; 39:610-632. [PMID: 29251523 PMCID: PMC6446417 DOI: 10.1177/0271678x17747188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
8
|
The effect of Coenzyme Q10 supplementation on serum levels of lactate, pyruvate, matrix metalloproteinase 9 and nitric oxide in women with migraine. A double blind, placebo, controlled randomized clinical trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Kondratieva N, Azimova J, Skorobogatykh K, Sergeev A, Naumova E, Kokaeva Z, Anuchina A, Rudko O, Tabeeva G, Klimov E. Biomarkers of migraine: Part 1 – Genetic markers. J Neurol Sci 2016; 369:63-76. [DOI: 10.1016/j.jns.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023]
|
10
|
Loewendorf AI, Matynia A, Saribekyan H, Gross N, Csete M, Harrington M. Roads Less Traveled: Sexual Dimorphism and Mast Cell Contributions to Migraine Pathology. Front Immunol 2016; 7:140. [PMID: 27148260 PMCID: PMC4836167 DOI: 10.3389/fimmu.2016.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
Migraine is a common, little understood, and debilitating disease. It is much more prominent in women than in men (~2/3 are women) but the reasons for female preponderance are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, depression, irritable bowel syndrome, and others; many of the comorbidities are more common in females. Current treatments for migraine are not gender specific, and rarely are migraine and its comorbidities considered and treated by the same specialist. Thus, migraine treatments represent a huge unmet medical need, which will only be addressed with greater understanding of its underlying pathophysiology. We discuss the current knowledge about sex differences in migraine and its comorbidities, and focus on the potential role of mast cells (MCs) in both. Sex-based differences in pain recognition and drug responses, fluid balance, and the blood–brain barrier are recognized but their impact on migraine is not well studied. Furthermore, MCs are well recognized for their prominent role in allergies but much less is known about their contributions to pain pathways in general and migraine specifically. MC-neuron bidirectional communication uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs can secrete nociceptor sensitizing and activating agents, such as serotonin, prostaglandins, histamine, and proteolytic enzymes that can also activate the pain-mediating transient receptor potential vanilloid channels. MCs express receptors for both estrogen and progesterone that induce degranulation upon binding. Furthermore, environmental estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on pain pathways or migraine is understudied. We hope that this discussion will encourage scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and migraine to develop better, more comprehensive treatments for migraine patients.
Collapse
Affiliation(s)
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Noah Gross
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | - Marie Csete
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | | |
Collapse
|
11
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
12
|
Borkum JM. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2015; 56:12-35. [PMID: 26639834 DOI: 10.1111/head.12725] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Blau theorized that migraine triggers are exposures that in higher amounts would damage the brain. The recent discovery that the TRPA1 ion channel transduces oxidative stress and triggers neurogenic inflammation suggests that oxidative stress may be the common denominator underlying migraine triggers. OBJECTIVE The aim of this review is to present and discuss the available literature on the capacity of common migraine triggers to generate oxidative stress in the brain. METHODS A Medline search was conducted crossing the terms "oxidative stress" and "brain" with "alcohol," "dehydration," "water deprivation," "monosodium glutamate," "aspartame," "tyramine," "phenylethylamine," "dietary nitrates," "nitrosamines," "noise," "weather," "air pollutants," "hypoglycemia," "hypoxia," "infection," "estrogen," "circadian," "sleep deprivation," "information processing," "psychosocial stress," or "nitroglycerin and tolerance." "Flavonoids" was crossed with "prooxidant." The reference lists of the resulting articles were examined for further relevant studies. The focus was on empirical studies, in vitro and of animals, of individual triggers, indicating whether and/or by what mechanism they can generate oxidative stress. RESULTS In all cases except pericranial pain, common migraine triggers are capable of generating oxidative stress. Depending on the trigger, mechanisms include a high rate of energy production by the mitochondria, toxicity or altered membrane properties of the mitochondria, calcium overload and excitotoxicity, neuroinflammation and activation of microglia, and activation of neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. For some triggers, oxidants also arise as a byproduct of monoamine oxidase or cytochrome P450 processing, or from uncoupling of nitric oxide synthase. CONCLUSIONS Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered in clinical practice. The possible implications for prevention and for understanding the nature of the migraine attack are discussed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, Orono, ME, USA.,Health Psych Maine, Waterville, ME, USA
| |
Collapse
|
13
|
DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 2014; 8:302. [PMID: 25339863 PMCID: PMC4189386 DOI: 10.3389/fncel.2014.00302] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The function of the blood-brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier and blood-nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Universidade Federal do Rio de Janeiro – Campus MacaéRio de Janeiro, Brazil
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rosenilde C. Holanda-Afonso
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo L. Lima
- Departamento de Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Brazil
| |
Collapse
|
14
|
|
15
|
Taylor FR, Landy SH, Kaniecki RG. Abstracts and Citations. Headache 2013. [DOI: 10.1111/head.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
17
|
Mayer CL, Huber BR, Peskind E. Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache 2013; 53:1523-30. [PMID: 24090534 DOI: 10.1111/head.12173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Concussions following head and/or neck injury are common, and although most people with mild injuries recover uneventfully, a subset of individuals develop persistent post-concussive symptoms that often include headaches. Post-traumatic headaches vary in presentation and may progress to become chronic and in some cases debilitating. Little is known about the pathogenesis of post-traumatic headaches, although shared pathophysiology with that of the brain injury is suspected. Following primary injury to brain tissues, inflammation rapidly ensues; while this inflammatory response initially provides a defensive/reparative function, it can persist beyond its beneficial effect, potentially leading to secondary injuries because of alterations in neuronal excitability, axonal integrity, central processing, and other changes. These changes may account for the neurological symptoms often observed after traumatic brain injury, including headaches. This review considers selected aspects of the inflammatory response following traumatic brain injury, with an emphasis on the role of glial cells as mediators of maladaptive post-traumatic inflammation.
Collapse
Affiliation(s)
- Cynthia L Mayer
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
18
|
Radu BM, Bramanti P, Osculati F, Flonta ML, Radu M, Bertini G, Fabene PF. Neurovascular unit in chronic pain. Mediators Inflamm 2013; 2013:648268. [PMID: 23840097 PMCID: PMC3687484 DOI: 10.1155/2013/648268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Maria-Luisa Flonta
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihai Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Giuseppe Bertini
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Francesco Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
19
|
Tuka B, Helyes Z, Markovics A, Bagoly T, Szolcsányi J, Szabó N, Tóth E, Kincses ZT, Vécsei L, Tajti J. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 2013; 33:1085-95. [PMID: 23598374 DOI: 10.1177/0333102413483931] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies on migraineurs and our own animal experiments have revealed that pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) has an important role in activation of the trigeminovascular system. The aim of this study was to determine the PACAP-38-like immunoreactivity (LI) in the plasma of healthy subjects, and parallel with the calcitonin gene-related peptide (CGRP)-LI in migraine patients in the ictal and interictal periods. METHODS A total of 87 migraineurs and 40 healthy control volunteers were enrolled in the examination. Blood samples were collected from the cubital veins in both periods in 21 patients, and in either the ictal or the interictal period in the remaining 66 patients, and were analysed by radioimmunoassay. RESULTS A significantly lower PACAP-38-LI was measured in the interictal plasma of the migraineurs as compared with the healthy control group ( P < 0.011). In contrast, elevated peptide levels were detected in the ictal period relative to the attack-free period in the 21 migraineurs ( P PACAP-38 < 0.001; P CGRP < 0.035) and PACAP-38-LI in the overall population of migraineurs ( P < 0.009). A negative correlation was observed between the interictal PACAP-38-LI and the disease duration. CONCLUSION This is the first study that has provided evidence of a clear association between migraine phases (ictal and interictal) and plasma PACAP-38-LI alterations.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|