1
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2025; 169:e16228. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
2
|
George N, Xiao J. Inhibiting sphingosine 1-phosphate lyase: From efficacy to mechanism. Neurobiol Dis 2024; 199:106585. [PMID: 38955289 DOI: 10.1016/j.nbd.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Nelson George
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
3
|
Zveik O, Rechtman A, Ganz T, Vaknin-Dembinsky A. The interplay of inflammation and remyelination: rethinking MS treatment with a focus on oligodendrocyte progenitor cells. Mol Neurodegener 2024; 19:53. [PMID: 38997755 PMCID: PMC11245841 DOI: 10.1186/s13024-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.
Collapse
Affiliation(s)
- Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Adi Vaknin-Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
4
|
Willems E, Schepers M, Piccart E, Wolfs E, Hellings N, Ait-Tihyaty M, Vanmierlo T. The sphingosine-1-phosphate receptor 1 modulator ponesimod repairs cuprizone-induced demyelination and induces oligodendrocyte differentiation. FASEB J 2024; 38:e23413. [PMID: 38243760 DOI: 10.1096/fj.202301557rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.
Collapse
Affiliation(s)
- Emily Willems
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
5
|
Robichon K, Bibi R, Kiernan M, Denny L, Prisinzano TE, Kivell BM, La Flamme AC. Enhanced and complementary benefits of a nalfurafine and fingolimod combination to treat immune-driven demyelination. Clin Transl Immunology 2023; 12:e1480. [PMID: 38090669 PMCID: PMC10714663 DOI: 10.1002/cti2.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. METHODS Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. RESULTS Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. CONCLUSION This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Rabia Bibi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Mackenzie Kiernan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | | | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Anne Camille La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
6
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
7
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
8
|
Mirzaei M, Abyadeh M, Turner AJ, Wall RV, Chick JM, Paulo JA, Gupta VK, Basavarajappa D, Chitranshi N, Mirshahvaladi SSO, You Y, Fitzhenry MJ, Amirkhani A, Haynes PA, Klistorner A, Gupta V, Graham SL. Fingolimod effects on the brain are mediated through biochemical modulation of bioenergetics, autophagy, and neuroinflammatory networks. Proteomics 2022; 22:e2100247. [PMID: 35866514 PMCID: PMC9786555 DOI: 10.1002/pmic.202100247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Anita J. Turner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Roshana Vander Wall
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Joel M. Chick
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Veer K. Gupta
- School of MedicineDeakin UniversityGeelongVICAustralia
| | - Devaraj Basavarajappa
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Nitin Chitranshi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Seyed Shahab Oddin Mirshahvaladi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Yuyi You
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityMacquarie ParkNSWAustralia
- Biomolecular Discovery Research CentreMacquarie UniversitySydneyNSWAustralia
| | - Alexander Klistorner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Vivek Gupta
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Stuart L. Graham
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| |
Collapse
|
9
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
10
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
11
|
Song H, McEwen HP, Duncan T, Lee JY, Teo JD, Don AS. Sphingosine kinase 2 is essential for remyelination following cuprizone intoxication. Glia 2021; 69:2863-2881. [PMID: 34399014 DOI: 10.1002/glia.24074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023]
Abstract
Therapeutics that promote oligodendrocyte survival and remyelination are needed to restore neurological function in demyelinating diseases. Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through five G-protein coupled receptors. S1P receptor agonists such as Fingolimod are valuable immunosuppressants used to treat multiple sclerosis, and promote oligodendrocyte survival. However, the role for endogenous S1P, synthesized by the enzyme sphingosine kinase 2 (SphK2), in oligodendrocyte survival and myelination has not been established. This study investigated the requirement for SphK2 in oligodendrocyte survival and remyelination using the cuprizone mouse model of acute demyelination, followed by spontaneous remyelination. Oligodendrocyte density did not differ between untreated wild-type (WT) and SphK2 knockout (SphK2-/- ) mice. However, cuprizone treatment caused significantly greater loss of mature oligodendrocytes in SphK2-/- compared to WT mice. Following cuprizone withdrawal, spontaneous remyelination occurred in WT but not SphK2-/- mice, even though progenitor and mature oligodendrocyte density increased in both genotypes. Levels of cytotoxic sphingosine and ceramide were higher in the corpus callosum of SphK2-/- mice, and in contrast to WT mice, did not decline following cuprizone withdrawal in SphK2-/- mice. We also observed a significant reduction in myelin thickness with aging in SphK2-/- compared to WT mice. These results provide the first evidence that SphK2, the dominant enzyme catalyzing S1P synthesis in the adult brain, is essential for remyelination following a demyelinating insult and myelin maintenance with aging. We propose that persistently high levels of sphingosine and ceramide, a direct consequence of SphK2 deficiency, may block remyelination.
Collapse
Affiliation(s)
- Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Holly P McEwen
- Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas Duncan
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jonathan D Teo
- Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
14
|
Pournajaf S, Valian N, Mohaghegh Shalmani L, Khodabakhsh P, Jorjani M, Dargahi L. Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. Eur J Pharmacol 2020; 885:173502. [PMID: 32860811 DOI: 10.1016/j.ejphar.2020.173502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs) are propitious candidates for cell replacement therapy and supplying neurotrophic factors in the neurological disorders. Considering the potential remyelinating and regenerative effects of fingolimod, in this study, we evaluated its effects on EPI-NCSCs viability and the expression of neurotrophic and oligodendrocyte differentiation factors. EPI-NCSCs, extracted from the bulge of rat hair follicles, were characterized and treated with fingolimod (0, 50, 100, 200, 400, 600, 1000, and 5000 nM). The cell viability was evaluated by MTT assay at 6, 24 and 72 h. The expression of neurotrophic and differentiation factors in the cells treated with 100 and 400 nM fingolimod were measured at 24 and 120 h. Fingolimod at 50-600 nM increased the cells viability after 6 h, with no change at the higher concentrations. The highest concentration (5000nM) induced toxicity at 24 and 72 h. NGF and GDNF genes expression were decreased at 120 h, but on the contrary, brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) were increased by both concentrations at both time points. Oligodendrocyte markers including platelet-derived growth factor receptor A (PDGFRα), neuron-glial antigen 2 (NG2) and growth associated protein 43 (GAP43) were elevated at 120 h, which was accompanied with reduce in stemness markers (Nestin and early growth response 1 (EGR1)). Fingolimod increased the expression of neurotrophic factors in EPI-NCSCs, and guided them to oligodendrocyte fate. Therefore, fingolimod in combination with EPI-NCSCs, can be considered as a promising approach for demyelinating neurological disorders.
Collapse
Affiliation(s)
- Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
16
|
Preziosa P, Rocca MA, Pagani E, Storelli L, Rodegher M, Moiola L, Filippi M. Two-year regional grey and white matter volume changes with natalizumab and fingolimod. J Neurol Neurosurg Psychiatry 2020; 91:493-502. [PMID: 32111638 DOI: 10.1136/jnnp-2019-322439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To compare the efficacy of fingolimod and natalizumab in preventing regional grey matter (GM) and white matter (WM) atrophy in relapsing-remitting multiple sclerosis (RRMS) over 2 years. METHODS Patients with RRMS starting fingolimod (n=25) or natalizumab (n=30) underwent clinical examination and 3T MRI scans at baseline (month (M) 0), M6, M12 and M24. Seventeen healthy controls were also scanned at M0 and M24. Tensor-based morphometry and SPM12 were used to assess the longitudinal regional GM/WM volume changes. RESULTS At M0, no clinical or GM/WM volume differences were found between treatment groups. At M24, both drugs reduced relapse rate (p<0.001 for both) and stabilised disability. At M6 vs M0, both groups experienced significant atrophy of several areas in the cortex, deep GM nuclei and supratentorial WM. Significant bilateral cerebellar GM and WM atrophy occurred in fingolimod patients only. At M12 vs M6 and M24 vs M12, further supratentorial GM and WM atrophy occurred in both groups. Bilateral GM/WM cerebellar atrophy continued to progress in fingolimod patients only. Compared with natalizumab, fingolimod-treated patients showed a significant cerebellar GM/WM atrophy, mainly at M6 vs M0, but still occurring up to M24. Compared with fingolimod, natalizumab-treated patients had a small number of areas of GM atrophy in temporo-occipital regions at the different time-points. CONCLUSIONS Natalizumab and fingolimod are associated with heterogeneous temporal and regional patterns of GM and WM atrophy progression. Compared with natalizumab, fingolimod-treated patients experience accelerated GM and WM atrophy in the cerebellum, while both drugs show minimal regional volumetric differences in supratentorial regions.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Nystad AE, Lereim RR, Wergeland S, Oveland E, Myhr KM, Bø L, Torkildsen Ø. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. J Neuroimmunol 2019; 339:577091. [PMID: 31739156 DOI: 10.1016/j.jneuroim.2019.577091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
Abstract
Fingolimod is used to treat patients with relapsing-remitting multiple sclerosis; it crosses the blood-brain barrier and modulates sphingosine-1-phosphate receptors (S1PRs). Oligodendrocytes, astrocytes, microglia, and neuronal cells express S1PRs, and fingolimod could potentially improve remyelination and be neuroprotective. We used the cuprizone animal model, histo-, immunohistochemistry, and quantitative proteomics to study the effect of fingolimod on remyelination and axonal damage. Fingolimod was functionally active during remyelination by downregulating S1PR1 brain levels, and fingolimod-treated mice had more oligodendrocytes in the secondary motor cortex after three weeks of remyelination. However, there were no differences in remyelination or axonal damage compared to placebo. Thus, fingolimod does not seem to directly promote remyelination or protect against axonal injury or loss when given after cuprizone-induced demyelination.
Collapse
Affiliation(s)
- Agnes E Nystad
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Ragnhild Reehorst Lereim
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway; Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Stig Wergeland
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
19
|
Abstract
Multiple sclerosis treatment faces tremendous changes owing to the approval of new medications, some of which are available as oral formulations. Until now, the four orally available medications, fingolimod, dimethylfumarate (BG-12), teriflunomide, and cladribine have received market authorization, whereas laquinimod is still under development. Fingolimod is a sphingosine-1-phosphate inhibitor, which is typically used as escalation therapy and leads to up to 60% reduction of the annualized relapse rate, but might also have neuroprotective properties. In addition, there are three more specific S1P agonists in late stages of development: siponimod, ponesimod, and ozanimod. Dimethylfumarate has immunomodulatory and cytoprotective functions and is used as baseline therapy. Teriflunomide, the active metabolite of the rheumatoid arthritis medication leflunomide, targets the dihydroorotate dehydrogenase, thus inhibiting the proliferation of lymphocytes by depletion of pyrimidines. Here we will review the mechanisms of action, clinical trial data, as well as data about safety and tolerability of the compounds.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
20
|
Antel JP, Lin YH, Cui QL, Pernin F, Kennedy TE, Ludwin SK, Healy LM. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J Neuroimmunol 2018; 331:28-35. [PMID: 29566973 DOI: 10.1016/j.jneuroim.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.
Collapse
Affiliation(s)
- Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Samuel K Ludwin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Petković F, Campbell IL, Gonzalez B, Castellano B. Reduced cuprizone-induced cerebellar demyelination in mice with astrocyte-targeted production of IL-6 is associated with chronically activated, but less responsive microglia. J Neuroimmunol 2017; 310:97-102. [PMID: 28778453 DOI: 10.1016/j.jneuroim.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebellar pathology is a frequent feature of multiple sclerosis (MS), a demyelinating and neuroinflammatory disease of the central nervous system (CNS). Interleukin (IL)-6 is a multifunctional cytokine with a potential role in MS. Here we studied cuprizone-induced cerebellar pathology in transgenic mice with astrocyte-targeted production of IL-6 (GFAP-IL6), specifically focusing on demyelination, oligodendrocyte depletion and microglial cell response. RESULTS Over the course of cuprizone treatment, when compared with WT mice, GFAP-IL6Tg showed a reduced demyelination in the deep lateral cerebellar nuclei (LCN). The oligodendrocyte numbers in the LCN were comparable between WT and GFAP-IL6Tg mice after 4-6weeks of cuprizone treatment, however after the chronic cuprizone treatment (12weeks) we detected higher numbers of oligodendrocytes in GFAP-IL6Tg mice. Contrary to strong cuprizone-induced microglial activation in the LCN of WT mice, GFAP-IL6Tg mice had minimal cuprizone-induced microglial changes, despite an already existing reactive microgliosis in control GFAP-IL6Tg not present in control WT mice. CONCLUSIONS Our results show that chronic transgenic production of IL-6 reduced cuprizone-induced cerebellar demyelination and induced a specific activation state of the resident microglia population (Iba1+, CD11b+, MHCII+, CD68-), likely rendering them less responsive to subsequent injury signals.
Collapse
Affiliation(s)
- Filip Petković
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Autonomous University of Barcelona, Bellaterra 08193, Spain; Department of Immunology, Institute for Biological Research "Sinisa Stankovic", 11000 Belgrade, Serbia.
| | - Iain L Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
| | - Berta Gonzalez
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Autonomous University of Barcelona, Bellaterra 08193, Spain.
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Autonomous University of Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
22
|
Wood TC, Simmons C, Hurley SA, Vernon AC, Torres J, Dell’Acqua F, Williams SC, Cash D. Whole-brain ex-vivo quantitative MRI of the cuprizone mouse model. PeerJ 2016; 4:e2632. [PMID: 27833805 PMCID: PMC5101606 DOI: 10.7717/peerj.2632] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
Myelin is a critical component of the nervous system and a major contributor to contrast in Magnetic Resonance (MR) images. However, the precise contribution of myelination to multiple MR modalities is still under debate. The cuprizone mouse is a well-established model of demyelination that has been used in several MR studies, but these have often imaged only a single slice and analysed a small region of interest in the corpus callosum. We imaged and analyzed the whole brain of the cuprizone mouse ex-vivo using high-resolution quantitative MR methods (multi-component relaxometry, Diffusion Tensor Imaging (DTI) and morphometry) and found changes in multiple regions, including the corpus callosum, cerebellum, thalamus and hippocampus. The presence of inflammation, confirmed with histology, presents difficulties in isolating the sensitivity and specificity of these MR methods to demyelination using this model.
Collapse
Affiliation(s)
- Tobias C. Wood
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Samuel A. Hurley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Synaptive Medical, Toronto, ON, Canada
| | - Anthony C. Vernon
- Cells and Behaviour Unit, Department of Basic and Clinical Neuroscience, IOPPN, King’s College London, London, United Kingdom
| | - Joel Torres
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Flavio Dell’Acqua
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
- NatBrainLab, Department of Basic and Clinical Neuroscience, IOPPN, King’s College London, London, United Kingdom
| | - Steve C.R. Williams
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Effects of FTY720 (Fingolimod) on Proliferation, Differentiation, and Migration of Brain-Derived Neural Stem Cells. Stem Cells Int 2016; 2016:9671732. [PMID: 27829841 PMCID: PMC5088305 DOI: 10.1155/2016/9671732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Abstract
Insufficient proliferation, differentiation, and migration are the main pitfalls of neural stem cells (NSCs) in reparative therapeutics for the central nervous system (CNS) diseases. The potent lipid mediator sphingosine-1-phosphate (S1P) regulates cells' biological behavior broadly in the CNS. However, the effects of activating S1P on NSCs are not quite clear. In the current study, FTY720 (Fingolimod), an analog of S1P, was employed to induce the proliferation, differentiation, and migration of cultured brain-derived NSCs. The results indicated that proliferation and migration ability of NSCs were promoted by FTY720. Though we observed no obvious neuron prefers differentiation of NSCs, there were more protoplasmic astrocytes developed in the presence of certain concentration of FTY720. This work gives more comprehensive understanding of how FTY720 affects NSCs.
Collapse
|
24
|
Aharoni R. Remyelination in multiple sclerosis: realizing a long-standing challenge. Expert Rev Neurother 2015; 15:1369-72. [DOI: 10.1586/14737175.2015.1112740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|