1
|
Yang YS, Liu CY, Pei MQ, Sun ZD, Lin S, He HF. Quercetin protects against sepsis-associated encephalopathy by inhibiting microglia-neuron crosstalk via the CXCL2/CXCR2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155987. [PMID: 39216299 DOI: 10.1016/j.phymed.2024.155987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common brain lesion associated with severe sepsis, for which ferroptosis is a key driving factor. Thus, suppressing ferroptosis may be an effective strategy for treating SAE. Quercetin (QUE) is a natural flavonoid with antioxidant and anti-inflammatory properties. However, its role on ferroptosis in SAE remains unclear. PURPOSE This study aimed to investigate the mechanism underlying the therapeutic effect of QUE on cecal ligation perforation (CLP)-induced SAE. METHODS In vivo and in vitro SAE models were established using CLP and lipopolysaccharide (LPS), respectively. Both models underwent pre-treatment with QUE. RESULTS QUE attenuated CLP-induced symptoms, including temperature changes, neurological severity scores, learning and memory dysfunction, inflammatory cytokine release, and microglia activation in SAE mice, and inhibited LPS-induced microglia recruitment and chemotaxis. Bioinformatics analysis revealed that the C-X-C motif chemokine ligand 2 (CXCL2)/C-X-C motif chemokine receptor 2 (CXCR2) axis may play a key role in QUE-mediated protection against SAE. Moreover, QUE significantly inhibited LPS-induced CXCL2 up-regulation and protein secretion from microglia. Recombinant mouse-derived CXCL2 (rmCXCL2) promoted inflammatory cytokine secretion, NF-κB/NLRP3 signaling activation, and microglia recruitment and chemotaxis. Furthermore, rmCXCL2 induced ferroptosis in mouse hippocampal neurons, as evidenced by elevated malondialdehyde levels, decreased glutathione levels, excessive iron uptake, and altered ferroptosis-related protein expression. The CXCR2 antagonist SB225002 effectively reversed the effects of rmCXCL2. Importantly, in vivo experiments further demonstrated that the therapeutic effect of QUE on SAE was inhibited by rmCXCL2. CONCLUSION This study demonstrates that CXCL2 secreted by activated microglia mediates microglia self-activation and induces hippocampal neuronal ferroptosis via CXCR2 and that QUE exerts neuroprotective effects on SAE by blocking interactions between microglia and neurons via CXCL2/CXCR2 pathway inhibition.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhen-Dong Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, Darlinghurst, Australia.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
2
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Scott MC, LeBlanc O, Day H, Haase C, Olson SD, Cox CS. Cytokine Release by Microglia Exposed to Neurologic Injury Is Amplified by Lipopolysaccharide. J Surg Res 2024; 296:142-148. [PMID: 38277950 PMCID: PMC11404829 DOI: 10.1016/j.jss.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/28/2023] [Accepted: 12/25/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of death and morbidity in the trauma population. Microglia drive the secondary neuroinflammatory response after TBI. We sought to determine if the microglial response to neurologic injury was exacerbated by a second stimulus after exposure to neurologic injury. METHODS Sprague-Dawley rats (age 2-3 wk) were divided into injured and noninjured groups. Injured rats underwent a controlled cortical impact injury; noninjured rats remained naïve to any injury and served as the control group. Primary rat microglia were isolated and applied to in vitro cultures. After incubation for 24 h, the microglia were stimulated with lipopolysaccharide (LPS) or norepinephrine. Twenty-four hours after stimulation, cell culture supernatant was collected. Tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) production were measured by standard enzyme-linked immunosorbent assays. GraphPad Prism was used for statistical analysis. RESULTS When compared to noninjured microglia, LPS induced a significantly greater production of TNF-α in microglia isolated from the injured ipsilateral (versus noninjured = 938.8 ± 155.1, P < 0.0001) and injured contralateral hemispheres (versus noninjured = 426.6 ± 155.1, P < 0.0001). When compared to microglia from noninjured cerebral tissue, IL-6 production was significantly greater after LPS stimulation in the injured ipsilateral hemisphere (mean difference versus noninjured = 9540 ± 3016, P = 0.0101) and the contralateral hemisphere (16,700 ± 3016, P < 0.0001). Norepinephrine did not have a significant effect on IL-6 or TNF-α production. CONCLUSIONS LPS stimulation may amplify the release of proinflammatory cytokines from postinjury microglia. These data suggest that post-TBI complications, like sepsis, may propagate neuroinflammation by augmenting the proinflammatory response of microglia.
Collapse
Affiliation(s)
- Michael C Scott
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Olivia LeBlanc
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Harper Day
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Candice Haase
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
4
|
Morris DC, Zacharek A, Zhang ZG, Chopp M. Extracellular vesicles-Mediators of opioid use disorder? Addict Biol 2023; 28:e13353. [PMID: 38017641 DOI: 10.1111/adb.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Opioid use disorder (OUD) is a growing health emergency in the United States leading to an epidemic of overdose deaths. OUD is recognized as an addictive brain disorder resulting in psychological, cognitive and behavioural dysfunction. These observed clinical dysfunctions are a result of cellular changes that occur in the brain. Derangements in inflammation, neurogenesis and synaptic plasticity are observed in the brains of OUD patients. The mechanisms of these derangements are unclear; however, extracellular vesicles (EVs), membrane bound particles containing protein, nucleotides and lipids are currently being investigated as agents that invoke these cellular changes. The primary function of EVs is to facilitate intercellular communication by transfer of cargo (protein, nucleotides and lipids) between cells; however, changes in this cargo have been observed in models of OUD suggesting that EVs may be agents promoting the observed cellular derangements. This review summarizes evidence that altered cargo of EVs, specifically protein and miRNA, in models of OUD promote impairments in neurons, astrocytes and microglial cells. These findings support the premise that opioids alter EVs to detrimentally affect neuro-cellular function resulting in the observed addictive, psychological and neurocognitive deficits in OUD patients.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Michigan State University, College of Human Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Zheng G Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
5
|
Kang X, Cao Y, Sun G, Fei D, Kang K, Meng X, Zhao M. CircPTP4A2 Promotes Microglia Polarization in Cerebral Ischemic Stroke via miR-20b-5p/YTHDF1/TIMP2 Axis. Neuromolecular Med 2023; 25:501-515. [PMID: 37704831 DOI: 10.1007/s12017-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Activated microglia play dual roles in ischemic stroke (IS) according to its polarization states. Herein, we investigated the function of circPTP4A2 in regulating microglia polarization in IS. IS models were established by MACO/R and OGD/R treatment. TTC staining was employed to detect cerebral infarct size. Cell vitality was measured using CCK-8 assay. CD16 and CD206 levels were examined using flow cytometry. The interactions between circPTP4A2, miR-20b-5p, and YTHDF1 were analyzed by dual-luciferase reporter gene, RIP, or RNA pull-down assays. circPTP4A2 was upregulated in IS patients. circPTP4A2 knockdown alleviated MCAO/R-induced cerebral injury in mice. circPTP4A2 knockdown promoted microglia M2 polarization after OGD/R. circPTP4A2 promoted YTHDF1 expression by sponging miR-20b-5p. The promoting effect of circPTP4A2 knockdown on microglia M2 polarization was abrogated by miR-20b-5p inhibition. YTHDF1 activated the NF-κB pathway by increasing TIMP2 mRNA stability and expression. circPTP4A2 downregulation promoted microglia M2 polarization to inhibit IS development by regulating the miR-20b-5p/YTHDF1/TIMP2/NF-κB axis.
Collapse
Affiliation(s)
- Xianxin Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Yanhui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Guodong Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
6
|
Hu J, Xie S, Zhang H, Wang X, Meng B, Zhang L. Microglial Activation: Key Players in Sepsis-Associated Encephalopathy. Brain Sci 2023; 13:1453. [PMID: 37891821 PMCID: PMC10605398 DOI: 10.3390/brainsci13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common brain dysfunction, which results in severe cognitive and neurological sequelae and an increased mortality rate in patients with sepsis. Depending on the stimulus, microglia (resident macrophages in the brain that are involved in SAE pathology and physiology) can adopt two polarization states (M1/M2), corresponding to altered microglial morphology, gene expression, and function. We systematically described the pathogenesis, morphology, function, and phenotype of microglial activation in SAE and demonstrated that microglia are closely related to SAE occurrence and development, and concomitant cognitive impairment. Finally, some potential therapeutic approaches that can prime microglia and neuroinflammation toward the beneficial restorative microglial phenotype in SAE were outlined.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haisong Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinrun Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Binbin Meng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
8
|
Chung HY, Wickel J, Hahn N, Mein N, Schwarzbrunn M, Koch P, Ceanga M, Haselmann H, Baade-Büttner C, von Stackelberg N, Hempel N, Schmidl L, Groth M, Andreas N, Götze J, Coldewey SM, Bauer M, Mawrin C, Dargvainiene J, Leypoldt F, Steinke S, Wang ZQ, Hust M, Geis C. Microglia mediate neurocognitive deficits by eliminating C1q-tagged synapses in sepsis-associated encephalopathy. SCIENCE ADVANCES 2023; 9:eabq7806. [PMID: 37235660 DOI: 10.1126/sciadv.abq7806] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Meike Schwarzbrunn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nina Hempel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena 07743, Germany
| | - Juliane Götze
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Sina M Coldewey
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07749, Germany
| | | | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, UKSH, Kiel/Lübeck, Germany
- Department of Neurology, Christian-Albrechts University, Kiel 24105, Germany
| | - Stephan Steinke
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Michael Hust
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
9
|
Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q, Zhu W. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol 2023; 118:110111. [PMID: 37028275 DOI: 10.1016/j.intimp.2023.110111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established. METHODS C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting. RESULTS STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1β(IL-1β), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS. CONCLUSIONS The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response.
Collapse
Affiliation(s)
- Ya-Qin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Jie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Hui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Morris DC, Zhang ZG, Jaehne AK, Zhang J, Rivers EP. CLINICAL, MOLECULAR, AND EXOSOMAL MECHANISMS OF CARDIAC AND BRAIN DYSFUNCTION IN SEPSIS. Shock 2023; 59:173-179. [PMID: 36731014 DOI: 10.1097/shk.0000000000002015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Sepsis is a complex disease resulting from a dysregulated inflammatory response to an infection. Initiation of sepsis occurs from a localized infection that disseminates to the bloodstream placing all organ systems at risk. Septic shock is classically observed to manifest itself as systemic hypotension with hyporesponsiveness to vasopressor agents. Myocardial dysfunction occurs resulting in an inability to perfuse major organ systems throughout the body. Most importantly, the brain is hypoperfused creating an ischemic and inflammatory state resulting in the clinical observation of acute mental status changes and cognitive dysfunction commonly known as sepsis-associated encephalopathy. This short review describes the inflammatory molecular mechanisms of myocardial dysfunction, discusses the evidence of the dual roles of the microglia resulting in blood-brain barrier disruption, and suggests that septic-derived exosomes, endosome-derived lipid bilayer spheroids released from living cells, influence cardiac and neurological cellular function.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health, Detroit, Michigan
| | - Zheng Gang Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Health, Detroit, Michigan
| | - Jing Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan
| | | |
Collapse
|
11
|
Tian Y, Wang L, Fan X, Zhang H, Dong Z, Tao T. β-patchoulene alleviates cognitive dysfunction in a mouse model of sepsis associated encephalopathy by inhibition of microglia activation through Sirt1/Nrf2 signaling pathway. PLoS One 2023; 18:e0279964. [PMID: 36608000 PMCID: PMC9821490 DOI: 10.1371/journal.pone.0279964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sepsis associated encephalopathy (SAE) is a common but poorly understood complication during sepsis. Currently, there are no preventive or therapeutic agents available for this neurological disorder. The present study was designed to determine the potential protective effects of β-patchoulene (β-PAE) in a mouse model of SAE and explore the putative mechanisms underpinning the beneficial effects. MATERIALS AND METHODS SAE was induced in C57BL/6 mice by cecal ligation and puncture(CLP). Mice were administrated with β-PAE or saline by intra-cerebral ventricle(i.c.v) injection immediately after CLP surgery. The inhibitory avoidance tests and open field tests were performed at 24h, 48h and 7days after procedures. Cytokines expression, oxidative parameters, microglia polarization and apoptosis in the brain tissue were assessed. Sirt1, Nrf2, HO-1and cleaved-caspase3 expression in hippocampus was determined by western-blotting. Further, serum cytokines expression and spleen lymphocytes apoptosis were evaluated, and survival study was performed. RESULTS Septic mice suffered severe cognitive decline following CLP as evidenced by decreased memory latency time and lower frequency of line crossing in the behavioral tests. A high dose of β-PAE(1mg/kg) improved the cognitive impairment in SAE mice, which was accompanied by reduced cytokines expression and oxidative stress. Immunofluorescence assay showed that β-PAE inhibited the expression of Iba-1 and iNOS in microglia. The mechanistic study indicated that β-PAE could promote the nuclear expression of Sirt1/Nrf2 and enhance cytoplasmic HO-1 expression. Furthermore, i.c.v administration of β-PAE decreased the expression of serum cytokines and apoptosis in the spleen, thus leading to an improved 7-day survival of septic mice. Finally, blockade of Nrf2 activation with ML385 largely mitigated the protective effects of β-PAE on the cognitive function, neuroinflammation and survival in SAE mice. CONCLUSION In this study, we found that β-PAE significantly altered sepsis induced neuroinflammation and microglia activation, thus reversed the cognitive decline and improved the peripheral immune function. The neuroprotective effects were possibly mediated by the activation of Sirt1/Nrf2/HO-1 pathway. β-PAE might serve as a promising therapeutic agent for SAE prevention and treatment.
Collapse
Affiliation(s)
- Ye Tian
- Department of Anesthesiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of General Surgery, Air Force Medical Center, Beijing, China
| | - Xiaojing Fan
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Hui Zhang
- Department of Neurosurgery, Air Force Medical Center, Beijing, China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, Beijing, China
- * E-mail: (TT); (DZ)
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- * E-mail: (TT); (DZ)
| |
Collapse
|
12
|
Qin M, Gao Y, Guo S, Lu X, Zhao Q, Ge Z, Zhu H, Li Y. Establishment and evaluation of animal models of sepsis-associated encephalopathy. World J Emerg Med 2023; 14:349-353. [PMID: 37908801 PMCID: PMC10613796 DOI: 10.5847/wjem.j.1920-8642.2023.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a critical disease caused by sepsis. In addition to high mortality, SAE can also adversely affect life quality and lead to significant socioeconomic costs. This review aims to explore the development of evaluation animal models of SAE, giving insight into the direction of future research in terms of its pathophysiology and therapy. METHODS We performed a literature search from January 1, 2000, to December 31, 2022, in MEDLINE, PubMed, EMBASE, and Web of Science using related keywords. Two independent researchers screened all the accessible articles based on the inclusion and exclusion criteria and collected the relevant data of the studies. RESULTS The animal models for sepsis are commonly induced through cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) injection. SAE can be evaluated using nervous reflex scores and sepsis evaluation during the acute phase, or through Morris water maze (MWM), open-field test, fear condition (FC) test, inhibitory avoidance, and other tests during the late phase. CONCLUSION CLP and LPS injection are the most common methods for establishing SAE animal models. Nervous reflexs cores, MWM, FC test, and inhibitory avoidance are widely used in SAE model analysis. Future research should focus on establishing a standardized system for SAE development and analysis.
Collapse
Affiliation(s)
- Mubing Qin
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxia Gao
- Emergency Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shigong Guo
- Department of Rehabilitation Medicine, Southmead Hospital, Southmead Road, Bristol BS10 5NB, UK
| | - Xin Lu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhao
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing 100017, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
Reactive Microgliosis in Sepsis-Associated and Acute Hepatic Encephalopathies: An Ultrastructural Study. Int J Mol Sci 2022; 23:ijms232214455. [PMID: 36430933 PMCID: PMC9696099 DOI: 10.3390/ijms232214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis and acute liver failure are associated with severe endogenous intoxication. Microglia, which are the resident immune brain cells, play diverse roles in central nervous system development, surveillance, and defense, as well as contributing to neuroinflammatory reactions. In particular, microglia are fundamental to the pathophysiology of reactive toxic encephalopathies. We analyzed microglial ultrastructure, morphotypes, and phagocytosis in the sensorimotor cortex of cecal ligation and puncture (CLP) and acetaminophen-induced liver failure (AILF) Wistar rats. A CLP model induced a gradual shift of ~50% of surveillant microglia to amoeboid hypertrophic-like and gitter cell-like reactive phenotypes with active phagocytosis and frequent contacts with damaged neurons. In contrast, AILF microglia exhibited amoeboid, rod-like, and hypertrophic-like reactive morphotypes with minimal indications for efficient phagocytosis, and were mostly in contact with edematous astrocytes. Close interactions of reactive microglia with neurons, astrocytes, and blood-brain barrier components reflect an active contribution of these cells to the tissue adaptation and cellular remodeling to toxic brain damage. Partial disability of reactive microglia may affect the integrity and metabolism in all tissue compartments, leading to failure of the compensatory mechanisms in acute endogenous toxic encephalopathies.
Collapse
|
14
|
Peng LS, Xu Y, Wang QS. YY1 PROMOTES MICROGLIA M2 POLARIZATION THROUGH THE MIR-130A-3P/TREM-2 AXIS TO ALLEVIATE SEPSIS-ASSOCIATED ENCEPHALOPATHY. Shock 2022; 58:128-136. [PMID: 35234205 DOI: 10.1097/shk.0000000000001914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Purpose: Sepsis-associated encephalopathy (SAE) induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation. Yin Yang 1 (YY1) is an important transcription factor that acts as a key role in sepsis and neuroepithelium development. However, the function of YY1 in SAE remains unclear. Our study aimed to probe the intrinsic and concrete molecular mechanism of YY1 in SAE. Methods: SAE cell model and SAE animal model were constructed by lipopolysaccharide (LPS) treatment and cecal ligation and puncture surgery, respectively. Behavioral tests were performed to analyze the cognitive function. The polarization state of mouse microglia (BV-2 cells) was assessed by flow cytometry assay. The mRNA and protein expressions were assessed by qRT-PCR and western blot. Finally, the binding relationships between YY1, miR-130a-3p, andTREM-2were verified by dual luciferase reporter gene assay and/or ChIP assay. Results: Here our results described that YY1 and TREM-2 were downregulated and miR-130a-3p was upregulated in SAE. YY1 overexpression could promote M2 polarization of microglia, and alleviate neuroinflammation and behavioral deficits in vitro and in vivo. YY1 could inhibit miR-130a-3p promoter activity. As expected, miR-130a-3p overexpression abolished the effects of YY1 overexpression on LPS-treated BV-2 cells. Besides, TREM-2 was identified as the target of miR-130a-3p. TREM-2 silencing could reverse the effects of miR-130a-3p inhibition on LPS-treated BV-2 cells. Conclusion: Taken together, YY1 promoted microglia M2 polarization via upregulating TREM-2 by interacting with miR-130a-3p promoter, suggesting YY1 overexpression might be a novel therapeutic strategy of SAE.
Collapse
Affiliation(s)
- Liang-Shan Peng
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | | | | |
Collapse
|
15
|
Yan X, Yang K, Xiao Q, Hou R, Pan X, Zhu X. Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Front Immunol 2022; 13:929316. [PMID: 35958583 PMCID: PMC9361477 DOI: 10.3389/fimmu.2022.929316] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis that occurs in the absence of direct infection in the central nervous system or structural brain damage. Microglia are thought to be macrophages of the central nervous system, devouring bits of neuronal cells and dead cells in the brain. They are activated in various ways, and microglia-mediated neuroinflammation is characteristic of central nervous system diseases, including SAE. Here, we systematically described the pathogenesis of SAE and demonstrated that microglia are closely related to the occurrence and development of SAE. Furthermore, we comprehensively discussed the function and phenotype of microglia and summarized their activation mechanism and role in SAE pathogenesis. Finally, this review summarizes recent studies on treating cognitive impairment in SAE by blocking microglial activation and toxic factors produced after activation. We suggest that targeting microglial activation may be a putative treatment for SAE.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| |
Collapse
|
16
|
Zhao H, Lyu Y, Zhai R, Sun G, Ding X. Metformin Mitigates Sepsis-Related Neuroinflammation via Modulating Gut Microbiota and Metabolites. Front Immunol 2022; 13:797312. [PMID: 35572534 PMCID: PMC9102391 DOI: 10.3389/fimmu.2022.797312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota affects the functions of brains. However, its mechanism in sepsis remains unclear. This study evaluated the effect of metformin on ameliorating sepsis-related neurodamage by regulating gut microbiota and metabolites in septic rats. Cecal ligation and puncture (CLP) was used to establish the sepsis-related neurodamage animal models. Metformin therapy by gavage at 1 h after CLP administration was followed by fecal microbiota transplantation (FMT) to ensure the efficacy and safety of metformin on the sepsis-related neurodamage by regulating gut microbiota. The gut microbiota and metabolites were conducted by 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry metabolomic analysis. The brain tissue inflammation response was analyzed by histopathology and reverse transcription-polymerase chain reaction (RT-PCR). This study reported brain inflammatory response, hemorrhage in sepsis-related neurodamage rats compared with the control group (C group). Surprisingly, the abundance of gut microbiota slightly increased in sepsis-related neurodamage rats than C group. The ratio of Firmicutes/Bacteroidetes was significantly increased in the CLP group than the C group. However, no difference was observed between the CLP and the metformin-treated rats (MET group). Interestingly, the abundance of Escherichia_Shigella increased in the MET group than the C and CLP groups, while Lactobacillaceae abundance decreased. Furthermore, Prevotella_9, Muribaculaceae, and Alloprevotella related to short-chain fatty acids production increased in the sepsis-related neurodamage of metformin-treated rats. Additionally, Prevotella_9 and Muribaculaceae correlated positively to 29 metabolites that might affect the inflammatory factors in the brain. The FMT assay showed that metformin improved sepsis-related neurodamage by regulating the gut microbiota and metabolites in septic rats. The findings suggest that metformin improves the sepsis-related neurodamage through modulating the gut microbiota and metabolites in septic rats, which may be an effective therapy for patients with sepsis-related neurodamage.
Collapse
Affiliation(s)
- Huayan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lyu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqing Zhai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiying Sun
- Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xianfei Ding,
| |
Collapse
|
17
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
18
|
Detailed Characterization of Brain Dysfunction in a Long-Term Rodent Model of Critical Illness. Neurochem Res 2021; 47:613-621. [PMID: 34674138 DOI: 10.1007/s11064-021-03470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.
Collapse
|
19
|
Chen H, Dong B, Shi Y, Yu Y, Xie K. Hydrogen Alleviates Neuronal Injury and Neuroinflammation Induced by Microglial Activation via the Nuclear Factor Erythroid 2-related Factor 2 Pathway in Sepsis-associated Encephalopathy. Neuroscience 2021; 466:87-100. [PMID: 33992722 DOI: 10.1016/j.neuroscience.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral and central nervous system (CNS) dysfunction. Microglia play a vital role in protecting the brain from neuronal damage, which is closely related to inflammatory responses. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has an impact on microglial and neuronal injury. Here, we mainly explored the molecular mechanism by which Hydrogen (H2) regulates neuroinflammation in SAE and the role of Nrf2 in this process. An in vivo model of SAE was generated by cecal ligation and puncture (CLP). Primary microglia and neurons were cultured to establish an in vitro model. Microglia, neurons and brain tissue were obtained to detect Nrf2 expression, inflammation, cell injury, apoptosis, and microglial polarization. Escape latency, the number of platform crossings and the time spent in the target quadrant were measured to assess cognitive function. H2 attenuated microglial polarization from the M1 to the M2 phenotype, cytokine release and TLR/NF-κb activation and protected neurons from lipopolysaccharide (LPS)-activated microglia-induced injury via the Nrf2 pathway. SAE activated Nrf2 expression, and H2 further improved Nrf2 expression in SAE mice. H2 alleviated microglial polarization from the M1 to the M2 phenotype and cytokine release in the cerebral cortex and improved neuronal injury or cognitive dysfunction in SAE mice and wild-type mice but not in Nrf2-/- mice. H2 exerts antineuroinflammatory effects associated with TLR4/NF-κB signaling activation and neuroprotective effects by inhibiting the excessive release of proinflammatory cytokines, neuronal loss and apoptosis in vitro and in vivo through the Nrf2 pathway.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
20
|
Liu J, Jin Y, Ye Y, Tang Y, Dai S, Li M, Zhao G, Hong G, Lu ZQ. The Neuroprotective Effect of Short Chain Fatty Acids Against Sepsis-Associated Encephalopathy in Mice. Front Immunol 2021; 12:626894. [PMID: 33584734 PMCID: PMC7876449 DOI: 10.3389/fimmu.2021.626894] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids (SCFAs) are known to be actively involved in multiple brain disorders, but their roles in sepsis-associated encephalopathy (SAE) remain unclear. Here, we investigated the neuroprotective effects of SCFAs on SAE in mice. Male C57BL/6 mice were intragastrically pretreated with SCFAs for seven successive days, and then subjected to SAE induced by cecal ligation and puncture. The behavioral impairment, neuronal degeneration, and levels of inflammatory cytokines were assessed. The expressions of tight junction (TJ) proteins, including occludin and zoula occludens-1 (ZO-1), cyclooxygenase-2 (COX-2), cluster of differentiation 11b (CD11b), and phosphorylation of JNK and NF-κB p65 in the brain, were measured by western blot and Immunofluorescence analysis. Our results showed that SCFAs significantly attenuated behavioral impairment and neuronal degeneration, and decreased the levels of IL-1β and IL-6 in the brain of SAE mice. Additionally, SCFAs upregulated the expressions of occludin and ZO-1 and downregulated the expressions of COX-2, CD11b, and phosphorylation of JNK and NF-κB p65 in the brain of SAE mice. These findings suggested that SCFAs could exert neuroprotective effects against SAE in mice.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanglie Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengfang Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Lenz M, Eichler A, Kruse P, Strehl A, Rodriguez-Rozada S, Goren I, Yogev N, Frank S, Waisman A, Deller T, Jung S, Maggio N, Vlachos A. Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Front Immunol 2020; 11:614509. [PMID: 33391287 PMCID: PMC7772211 DOI: 10.3389/fimmu.2020.614509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1β, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Liu J, Jin Y, Li H, Yu J, Gong T, Gao X, Sun J. Probiotics Exert Protective Effect against Sepsis-Induced Cognitive Impairment by Reversing Gut Microbiota Abnormalities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14874-14883. [PMID: 33284020 DOI: 10.1021/acs.jafc.0c06332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent evidence has revealed that probiotics could affect neurodevelopment and cognitive function via regulating gut microbiota. However, the role of probiotics in sepsis-associated encephalopathy (SAE) remained unclear. This study was conducted to assess the effects and therapeutic mechanisms of probiotic Clostridium butyricum (Cb) against SAE in mice. The SAE model mouse was induced by cecal ligation and puncture (CLP) and was given by intragastric administration with Cb for 1 month. A series of behavioral tests, including neurological severity score, tail suspension test, and elevated maze test, were used to assess cognitive impairment. Nissl staining and Fluoro-Jade C (FJC) staining were used to assess neuronal injury. Microglia activation, the release of neuroinflammatory cytokines, and the levels of ionized calcium-binding adapter molecule 1 (Iba-1) and brain-derived neurotrophic factor (BDNF) in the brain were determined. The compositions of the gut microbiota were detected by 16S rRNA sequencing. Our results revealed that Cb significantly attenuated cognitive impairment and neuronal damage. Moreover, Cb significantly inhibited excessive activation of microglia, decreased Iba-1 level, and increased BDNF level in the SAE mice. In addition, Cb improved gut microbiota dysbiosis of SAE mice. These findings revealed that Cb exerted anti-inflammatory effects and improved cognitive impairment in SAE mice, and their neuroprotective mechanisms might be mediated by regulating gut microbiota.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yangjie Jin
- Department of Emergency Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Haijun Li
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, Zhejiang 317000, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
23
|
Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T, de Medeiros FD, da Rosa N, Generoso J, Simoes L, Farias HR, da Silva Lemos I, Giridharan V, Rezin GT, Fortunato JJ, Bitencourt RM, Streck EL, Dal-Pizzol F, Barichello T, Petronilho F. NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Mol Neurobiol 2020; 57:5247-5262. [PMID: 32870491 DOI: 10.1007/s12035-020-02089-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1β, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.
Collapse
Affiliation(s)
- Lucineia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Kiuanne Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Bernardo Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Thaynan Vieira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabiana Durante de Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lutiana Simoes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Hémelin Resende Farias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Rafael Mariano Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
24
|
Li Y, Yin L, Fan Z, Su B, Chen Y, Ma Y, Zhong Y, Hou W, Fang Z, Zhang X. Microglia: A Potential Therapeutic Target for Sepsis-Associated Encephalopathy and Sepsis-Associated Chronic Pain. Front Pharmacol 2020; 11:600421. [PMID: 33329005 PMCID: PMC7729164 DOI: 10.3389/fphar.2020.600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Neurological dysfunction, one of the severe manifestations of sepsis in patients, is closely related to increased mortality and long-term complications in intensive care units, including sepsis-associated encephalopathy (SAE) and chronic pain. The underlying mechanisms of these sepsis-induced neurological dysfunctions are elusive. However, it has been well established that microglia, the dominant resident immune cell in the central nervous system, play essential roles in the initiation and development of SAE and chronic pain. Microglia can be activated by inflammatory mediators, adjacent cells and neurotransmitters in the acute phase of sepsis and then induce neuronal dysfunction in the brain. With the spotlight focused on the relationship between microglia and sepsis, a deeper understanding of microglia in SAE and chronic pain can be achieved. More importantly, clarifying the mechanisms of sepsis-associated signaling pathways in microglia would shed new light on treatment strategies for SAE and chronic pain.
Collapse
Affiliation(s)
- Yi Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Yin
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhongmin Fan
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Binxiao Su
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Chen
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Ma
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wugang Hou
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zongping Fang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xijing Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Effects of S100B neutralization on the long-term cognitive impairment and neuroinflammatory response in an animal model of sepsis. Neurochem Int 2020; 142:104906. [PMID: 33232757 DOI: 10.1016/j.neuint.2020.104906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023]
Abstract
The nervous system is one of the first systems to be affected during sepsis. Sepsis not only has a high risk of mortality, but could also lead to cerebral dysfunction and cognitive impairment in long-term survival patients. The receptor for advanced glycation end products (RAGE) can interact with several ligands, and its activation triggers a series of cell signaling events, resulting in the hyperinflammatory condition related to sepsis. Recent studies show that elevated levels of S100B (RAGE ligand) are associated with the pathophysiology of neurodegenerative disorders. They also participate in inflammatory brain diseases and may lead to an increased activation of microglia and astrocytes, leading to neuronal death. This study aimed to determine the effect of S100B inhibition on the neuroinflammatory response in sepsis. Sepsis was induced in Wistar rats by cecal ligation and perforation (CLP). There were three groups: Sham, CLP, and CLP +10 μg/kg of monoclonal antibody (Anti-S100B) administered intracerebroventricularly. The animals were killed 30 days after sepsis following behavioral evaluation by open field, novel object recognition, and splash test. The hippocampus, prefrontal cortex, and amydgala were used for the determination of S100B and RAGE proteins by western blotting and for the evaluation of cytokine levels and verification of the number of microglial cells by immunohistochemistry. On day 30, both the Sham and CLP + anti-S100B groups were capable of recovering the habitual memory in the open field task. Regarding novel object recognition, Sham and CLP + anti-S100B groups increased the recognition index during the test session in comparison to the training session. There was a significant increase in the time of grooming in CLP + anti-S100B in comparison to the CLP group. There was a modulation of cytokine levels and immunohistochemistry showed that the CLP + anti-S100B group had a decrease in the number of microglial cells only in the hippocampus. These results helped to understand the role of S100B protein in the pathophysiology of sepsis-associated encephalopathy and could be helpful to further experimental studies regarding this subject.
Collapse
|
26
|
Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci (Lond) 2020; 134:765-776. [PMID: 32219335 DOI: 10.1042/cs20191322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND In order to modulate microglial phenotypes in vivo, M1 microglia were depleted by administration of gadolinium chloride and the expression of M2 microglia was induced by IL-4 administration in an animal model of sepsis to better characterize the role of microglial phenotypes in sepsis-induced brain dysfunction. METHODS Wistar rats were submitted to sham or cecal ligation and perforation (CLP) and treated with IL-4 or GdCl3. Animals were submitted to behavioral tests 10 days after surgery. In a separated cohort of animals at 24 h, 3 and 10 days after surgery, hippocampus was removed and cytokine levels, M1/M2 markers and CKIP-1 levels were determined. RESULTS Modulation of microglia by IL-4 and GdCl3 was associated with an improvement in long-term cognitive impairment. When treated with IL-4 and GdCl3, the reduction of pro-inflammatory cytokines was apparent in almost all analyzed time points. Additionally, CD11b and iNOS were increased after CLP at all time points, and both IL-4 and GdCl3 treatments were able to reverse this. There was a significant decrease in CD11b gene expression in the CLP+GdCl3 group. IL-4 treatment was able to decrease iNOS expression after sepsis. Furthermore, there was an increase of CKIP-1 in the hippocampus of GdCl3 and IL-4 treated animals 10 days after CLP induction. CONCLUSIONS GdCl3 and IL-4 are able to manipulate microglial phenotype in an animal models of sepsis, by increasing the polarization toward an M2 phenotype IL-4 and GdCl3 treatment was associated with decreased brain inflammation and functional recovery.
Collapse
|
27
|
Wang X, Xu X, Guo Y, Huang P, Ha Y, Zhang R, Bai Y, Cui X, He S, Liu Q. Qiang Xin 1 Formula Suppresses Excessive Pro-Inflammatory Cytokine Responses and Microglia Activation to Prevent Cognitive Impairment and Emotional Dysfunctions in Experimental Sepsis. Front Pharmacol 2020; 11:579. [PMID: 32457609 PMCID: PMC7225281 DOI: 10.3389/fphar.2020.00579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Sepsis commonly leads to acute and long-term cognitive and affective impairments which are associated with increased mortality in patients. Neuroinflammation characterized by excessive cytokine release and immune cell activation underlies the behavioral changes associated with sepsis. We previously reported that the administration of a traditional Chinese herbal Qiang Xin 1 (QX1) formula improves survival in septic mice. This study was performed to better understand the effects and the mechanisms of QX1 formula treatment on behavioral changes in a preclinical septic model induced by cecal ligation and puncture. Oral administration of QX1 formula significantly improved survival, alleviated overall cognitive impairment and emotional dysfunction as assessed by the Morris water maze, novel object recognition testing, elevated plus maze and open field testing in septic mice. QX1 formula administration dramatically inhibited short and long-term excessive pro-inflammatory cytokine production both peripherally and centrally, and was accompanied by diminished microglial activation in septic mice. Biological processes including synaptic transmission, microglia cell activation, cytokine production, microglia cell polarization, as well as inflammatory responses related to signaling pathways including the MAPK signaling pathway and the NF-κB signaling pathway were altered prominently by QX1 formula treatment in the hippocampus of septic mice. In addition, QX1 formula administration decreased the expression of the M1 phenotype microglia gene markers such as Cd32, Socs3, and Cd68, while up-regulated M2 phenotype marker genes including Myc, Arg-1, and Cd206 as revealed by microarray analysis and Real-time PCR. In conclusion, QX1 formula administration attenuates cognitive deficits, emotional dysfunction, and reduces neuroinflammatory responses to improve survival in septic mice. Diminished microglial activation and altered microglial polarization are involved in the neuroprotective mechanism of QX1 formula.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Po Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yanxiang Ha
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Rui Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yunjing Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
28
|
Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T. Septic-Associated Encephalopathy: a Comprehensive Review. Neurotherapeutics 2020; 17:392-403. [PMID: 32378026 PMCID: PMC7283452 DOI: 10.1007/s13311-020-00862-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septic-associated encephalopathy (SAE) is a key manifestation of sepsis, ranging from delirium to coma and occurring in up to 70% of patients admitted to the ICU. SAE is associated with higher ICU and hospital mortality, and also with poorer long-term outcomes, including cognitive and functional outcomes. The pathophysiology of SAE is complex, and it may involve neurotransmitter dysfunction, inflammatory and ischemic lesions to the brain, microglial activation, and blood-brain barrier dysfunction. Delirium (which is included in the SAE spectrum) is mostly diagnosed with validated scales in the ICU population. There is no established treatment for SAE; benzodiazepines should generally be avoided in this setting. Nonpharmacological prevention and management is key for treating SAE; it includes avoiding oversedation (mainly with benzodiazepines), early mobilization, and sleep promotion.
Collapse
Affiliation(s)
- Aurélien Mazeraud
- GHU Paris Psychiatrie et Neuroscience, Neurointensive Care and Neuroanesthesia Department, 1, rue Cabanis, 75014, Paris, France
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
- Université de Paris, 75006, Paris, France
| | - Cássia Righy
- GHU Paris Psychiatrie et Neuroscience, Neurointensive Care and Neuroanesthesia Department, 1, rue Cabanis, 75014, Paris, France
- Instituto Estadual do Cérebro Paul Niemeyer, Rio de Janeiro, Brazil
| | - Eleonore Bouchereau
- GHU Paris Psychiatrie et Neuroscience, Neurointensive Care and Neuroanesthesia Department, 1, rue Cabanis, 75014, Paris, France
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
- Université de Paris, 75006, Paris, France
| | - Sarah Benghanem
- Université de Paris, 75006, Paris, France
- Médecine Intensive et Réanimation, Centre Hospitalier Universitaire Cochin, Paris, France
| | | | - Tarek Sharshar
- GHU Paris Psychiatrie et Neuroscience, Neurointensive Care and Neuroanesthesia Department, 1, rue Cabanis, 75014, Paris, France.
- Université de Paris, 75006, Paris, France.
| |
Collapse
|
29
|
Zhuang X, Yu Y, Jiang Y, Zhao S, Wang Y, Su L, Xie K, Yu Y, Lu Y, Lv G. Molecular hydrogen attenuates sepsis-induced neuroinflammation through regulation of microglia polarization through an mTOR-autophagy-dependent pathway. Int Immunopharmacol 2020; 81:106287. [DOI: 10.1016/j.intimp.2020.106287] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
30
|
Sepsis-Associated Encephalopathy: From Delirium to Dementia? J Clin Med 2020; 9:jcm9030703. [PMID: 32150970 PMCID: PMC7141293 DOI: 10.3390/jcm9030703] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a major cause of death in intensive care units worldwide. The acute phase of sepsis is often accompanied by sepsis-associated encephalopathy, which is highly associated with increased mortality. Moreover, in the chronic phase, more than 50% of surviving patients suffer from severe and long-term cognitive deficits compromising their daily quality of life and placing an immense burden on primary caregivers. Due to a growing number of sepsis survivors, these long-lasting deficits are increasingly relevant. Despite the high incidence and clinical relevance, the pathomechanisms of acute and chronic stages in sepsis-associated encephalopathy are only incompletely understood, and no specific therapeutic options are yet available. Here, we review the emergence of sepsis-associated encephalopathy from initial clinical presentation to long-term cognitive impairment in sepsis survivors and summarize pathomechanisms potentially contributing to the development of sepsis-associated encephalopathy.
Collapse
|
31
|
Hui B, Yao X, Zhang L, Zhou Q. Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1761-1768. [PMID: 31915845 DOI: 10.1007/s00210-019-01775-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Abnormal neuroinflammation ignited by overproduction of chemokines and cytokines via microglial cells can induce the occurrence and development of neurodegenerative disorders. The aim of this study is to investigate the effects of dexamethasone sodium phosphate (Dex-SP) on chemokine and cytokine secretion in lipopolysaccharide (LPS)-activated microglial cells. LPS markedly enhanced the secretion of pro-inflammatory factors such as regulated on activation, normal T cell expressed and secreted (RANTES), transforming growth factor beta-β1 (TGF-β1) and nitric oxide (NO), but decreased the production of macrophage inflammatory protein-1α (MIP-1α) and interleukin 10 (IL-10) in BV-2 microglial cells. Furthermore, LPS increased BV-2 microglial cell migration. However, Dex-SP treatment had the opposite effect, dampening the secretion of RANTES, TGF-β1, and NO, while increasing the production of MIP-1α and IL-10 and blocking migration of LPS-stimulated BV-2 microglial cells. Furthermore, Dex-SP markedly suppressed the LPS-induced degradation of IRAK-1 and IRAK-4, and blocked the activation in TRAF6, p-TAK1, and p-JNK in BV-2 microglial cells. These results showed that Dex-SP inhibited the neuroinflammatory response and migration in LPS-activated BV-2 microglia by inhibiting the secretion of RANTES, TGF-β1, and NO and increasing the production of MIP-1α and IL-10. The molecular mechanism of Dex-SP may be associated with inhibition of TRAF6/TAK-1/JNK signaling pathways mediated by IRAK-1 and IRAK-4.
Collapse
Affiliation(s)
- Bin Hui
- College of Pharmacy, Shanghai University of Medical & Health Sciences, Shanghai, China
- Health School attached to Shanghai University of Medical & Health Sciences, Shanghai, China
| | - Xin Yao
- Jiyuan Shi People's Hospital, Jiyuan, Henan, China
| | - Liping Zhang
- Department of Emergency Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Qinhua Zhou
- College of Medicine, Jiaxing University, Jiaxing, China.
| |
Collapse
|
32
|
Savage JC, St-Pierre MK, Hui CW, Tremblay ME. Microglial Ultrastructure in the Hippocampus of a Lipopolysaccharide-Induced Sickness Mouse Model. Front Neurosci 2019; 13:1340. [PMID: 31920505 PMCID: PMC6932978 DOI: 10.3389/fnins.2019.01340] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Sickness behavior is a set of behavioral changes induced by infections and mediated by pro-inflammatory cytokines. It is characterized by fatigue, decreased appetite and weight loss, changes in sleep patterns, cognitive functions, and lost interest in social activity. It can expedite recovery by conserving energy to mount an immune response involving innate immunity. To provide insights into microglial implication in sickness behavior with special focus on cognitive and social impairment, we investigated changes in their ultrastructure and interactions with synapses using a toxemia mouse model. Adult mice were injected with 1 mg/kg lipopolysaccharide (LPS) or saline, and assayed for signs of sickness behavior. LPS treated mice displayed reduced activity in open-field tests 24 h post-injection, while social avoidance and weight gain/loss were not significantly different between treatment groups. Microglia were investigated using electron microscopy to describe changes in their structure and function at nanoscale resolution. Microglial cell bodies and processes were investigated in the hippocampus CA1, a region responsible for learning and memory that is often impacted after peripheral LPS administration. Microglia in LPS treated animals displayed larger cell bodies as well as less complex processes at the time point examined. Strikingly, microglial processes in LPS injected animals were also more likely to contact excitatory synapses and contained more phagocytic material compared with saline injected controls. We have identified at the ultrastructural level significant changes in microglia-synapse interactions shortly after LPS administration, which draws attention to studying the roles of microglia in synaptic rewiring after inflammatory stimuli.
Collapse
Affiliation(s)
- Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Marie-Kim St-Pierre
- Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Chin Wai Hui
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
33
|
Microglial Cells Depletion Increases Inflammation and Modifies Microglial Phenotypes in an Animal Model of Severe Sepsis. Mol Neurobiol 2019; 56:7296-7304. [PMID: 31020614 DOI: 10.1007/s12035-019-1606-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/12/2019] [Indexed: 01/20/2023]
Abstract
Sepsis-associated encephalopathy is highly prevalent and has impact both in early and late morbidity and mortality. The mechanisms by which sepsis induces brain dysfunction include neuroinflammation, disrupted blood-brain barrier, oxidative stress, and microglial activation, but the cellular and molecular mechanisms involved in these events are not completely understood. Our objective was to determine the effects of microglial depletion in the early systemic and brain inflammatory response and its impact in phenotypes expression in an animal model of sepsis. Animals were subjected to CLP, and depletion of microglial cells was accomplished by administration of (Lipo)-encapsulated clodronate and microglial repopulation by doxycycline. Clod-lip treatment was effective in decreasing microglia density in the hippocampus of animals. Pro-inflammatory cytokines were increased in the CLP+PBS, and liposomes administration increased even further these cytokines mainly 7 days, suggesting that microglial depletion exacerbates both local and systemic inflammation. In contrast, repopulation with doxycycline was able to revert the cytokine levels in both serum and cerebral structures on day 7 and 14 after repopulation. There were no differences in the correlation between M1 and M2 markers by real-time PCR, but immunohistochemistry showed significant increase in CD11b expression in CLP+PBS with greater expression in CLP + liposomes in the hippocampus. These results suggest that the depletion of microglia during severe sepsis development could be associated with early exacerbation of brain and systemic inflammation and repopulation is able to revert this condition, once a rapid neurological recovery is noticed until 7 days after sepsis.
Collapse
|
34
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
35
|
Pandur E, Varga E, Tamási K, Pap R, Nagy J, Sipos K. Effect of Inflammatory Mediators Lipopolysaccharide and Lipoteichoic Acid on Iron Metabolism of Differentiated SH-SY5Y Cells Alters in the Presence of BV-2 Microglia. Int J Mol Sci 2018; 20:ijms20010017. [PMID: 30577543 PMCID: PMC6337407 DOI: 10.3390/ijms20010017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the Gram-positive bacterial cell wall components are important mediators of neuroinflammation in sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various pro-inflammatory cytokines. It has been demonstrated that disturbance of iron homeostasis of the brain is one of the underlying causes of neuronal cell death but the mechanisms contributing to this process are still questionable. In the present study, we established monocultures of differentiated SH-SY5Y cells and co-cultures of differentiated SH-SY5Y cells and BV-2 microglia as neuronal model systems to selectively examine the effect of inflammatory mediators LPS and LTA on iron homeostasis of SH-SY5Y cells both in mono- and co-cultures. We monitored the IL-6 and TNFα secretions of the treated cells and determined the mRNA and protein levels of iron importers (transferrin receptor-1 and divalent metal transporter-1), and iron storing genes (ferritin heavy chain and mitochondrial ferritin). Moreover, we examined the relation between hepcidin secretion and intracellular iron content. Our data revealed that LPS and LTA triggered distinct responses in SH-SY5Y cells by differently changing the expressions of iron uptake, as well as cytosolic and mitochondrial iron storage proteins. Moreover, they increased the total iron contents of the cells but at different rates. The presence of BV-2 microglial cells influenced the reactions of SH-SY5Y cells on both LPS and LTA treatments: iron uptake and iron storage, as well as the neuronal cytokine production have been modulated. Our results demonstrate that BV-2 cells alter the iron metabolism of SH-SY5Y cells, they contribute to the iron accumulation of SH-SY5Y cells by manipulating the effects of LTA and LPS proving that microglia are important regulators of neuronal iron metabolism at neuroinflammation.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Kitti Tamási
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság út 13., H-7624 Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| |
Collapse
|
36
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|