1
|
Calvo-Alvarez E, D'Alessandro S, Zanotta N, Basilico N, Parapini S, Signorini L, Perego F, Maina KK, Ferrante P, Modenese A, Pizzocri P, Ronsivalle A, Delbue S, Comar M. Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy. BMC Immunol 2024; 25:49. [PMID: 39061002 PMCID: PMC11282750 DOI: 10.1186/s12865-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The systemic inflammatory syndrome called "cytokine storm" has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). RESULTS Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. CONCLUSIONS The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Sarah D'Alessandro
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy.
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Kevin Kamau Maina
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | | | | | | | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| |
Collapse
|
2
|
Bronge M, Högelin KA, Thomas OG, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Zeitelhofer M, Holmgren E, Linnerbauer M, Adzemovic MZ, Hellström C, Jelcic I, Liu H, Nilsson P, Hillert J, Brundin L, Fink K, Kockum I, Tengvall K, Martin R, Tegel H, Gräslund T, Al Nimer F, Guerreiro-Cacais AO, Khademi M, Gafvelin G, Olsson T, Grönlund H. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. SCIENCE ADVANCES 2022; 8:eabn1823. [PMID: 35476434 PMCID: PMC9045615 DOI: 10.1126/sciadv.abn1823] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), in which pathological T cells, likely autoimmune, play a key role. Despite its central importance, the autoantigen repertoire remains largely uncharacterized. Using a novel in vitro antigen delivery method combined with the Human Protein Atlas library, we screened for T cell autoreactivity against 63 CNS-expressed proteins. We identified four previously unreported autoantigens in MS: fatty acid-binding protein 7, prokineticin-2, reticulon-3, and synaptosomal-associated protein 91, which were verified to induce interferon-γ responses in MS in two cohorts. Autoreactive profiles were heterogeneous, and reactivity to several autoantigens was MS-selective. Autoreactive T cells were predominantly CD4+ and human leukocyte antigen-DR restricted. Mouse immunization induced antigen-specific responses and CNS leukocyte infiltration. This represents one of the largest systematic efforts to date in the search for MS autoantigens, demonstrates the heterogeneity of autoreactive profiles, and highlights promising targets for future diagnostic tools and immunomodulatory therapies in MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Olivia G. Thomas
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Ola B. Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Manuel Zeitelhofer
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Mathias Linnerbauer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Milena Z. Adzemovic
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hao Liu
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hanna Tegel
- Human Protein Atlas, Department of Protein Science, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Zhong K, Li Y, Tang Y, Yu G, Zilundu PLM, Wang Y, Zhou Y, Xu X, Fu R, Zhou L. Cytokine profile and glial activation following brachial plexus roots avulsion injury in mice. J Neuroimmunol 2021; 353:577517. [PMID: 33582398 DOI: 10.1016/j.jneuroim.2021.577517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Inflammation and tissue infiltration by various immune cells play a significant role in the pathogenesis of neurons suffering the central nervous systems diseases. Although brachial plexus root avulsion (BPRA) leads to dramatic motoneurons (MNs) death and permanent loss of function, however, the knowledge gap on cytokines and glial reaction in the spinal cord injury is still existing. The current study is sought to investigate the alteration of specific cytokine expression patterns of the BPRA injured spinal cord during an acute and subacute period. The cytokine assay, transmission electron microscopy, and histological staining were utilized to assess cytokine network alteration, ultrastructure morphology, and glial activation and MNs loss within two weeks post-injury on a mouse unilateral BPRA model. The BPRA injury caused a progressively spinal MNs loss, reduced the alpha-(α) MNs synaptic inputs, whereas enhanced glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule-1 (IBA-1), F4/80 expression in ipsilateral but not the contralateral spinal segments. Additionally, cytokine assays revealed BPRA significantly altered the level of CXCL1, ICAM1, IP10, MCP-5, MIP1-α, and CD93. Notably, the elevated MIP1-α was mainly expressed in the injured spinal MNs. While the re-distribution of CD93 expression, from the cytoplasm to the nucleus, occasionally occurred at neurons of the ipsilateral spinal segment after injury. Overall, these findings suggest that the inflammatory cytokines associated with glial cell activation might contribute to the pathophysiology of the MNs death caused by nerve roots injury.
Collapse
Affiliation(s)
- Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 51900, China.
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Guangyin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yaqiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Rao Fu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| |
Collapse
|
4
|
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11:549842. [PMID: 33072089 PMCID: PMC7541830 DOI: 10.3389/fimmu.2020.549842] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS) with an autoimmune component. Among the recent disease-modifying treatments available, Natalizumab, a monoclonal antibody directed against the alpha chain of the VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including CNS. It potently reduces relapses and active brain lesions in the relapsing remitting form of the disease. However, it has also been associated with a severe infectious complication, the progressive multifocal leukoencephalitis (PML). Using the standard protocol with an injection every 4 weeks it has been shown by a close monitoring of the drug that trough levels soon reach a plateau with an almost saturation of the target cell receptor as well as a down modulation of this receptor. In this review, mechanisms of action involved in therapeutic efficacy as well as in PML risk will be discussed. Furthermore the interest of a biological monitoring that may be helpful to rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies, although sometimes unapparent, can be detected indirectly by normalization of CD49d expression on circulating mononuclear cells and might require to switch to another drug. On the other hand a stable modulation of CD49d expression might be useful to follow the circulating NAT levels and apply an extended interval dose scheme that could contribute to limiting the risk of PML.
Collapse
Affiliation(s)
- Kathy Khoy
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Gilles Defer
- Department of Neurology, MS Expert Centre, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Gautier Petit
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Olivier Toutirais
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Brigitte Le Mauff
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
5
|
Bronge M, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Holmgren E, Macrini C, Winklmeier S, Meinl E, Brundin L, Khademi M, Olsson T, Gafvelin G, Grönlund H. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J Autoimmun 2019; 102:38-49. [PMID: 31054941 DOI: 10.1016/j.jaut.2019.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Ola B Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Lou Brundin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| |
Collapse
|