1
|
Abe K, Furukawa K, Matsumoto M, Futagawa Y, Shiozaki H, Onda S, Haruki K, Shirai Y, Okamoto T, Ikegami T. Osteosarcopenia impacts treatment outcomes for Barcelona Cancer Liver Classification stage A hepatocellular carcinoma. Surg Oncol 2024; 53:102043. [PMID: 38330806 DOI: 10.1016/j.suronc.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
AIM To study the effect of preoperative osteosarcopenia (OSP) on the prognosis of treatment (surgery or radiofrequency ablation (RFA)) in patients with Barcelona Cancer Liver Classification stage A hepatocellular carcinoma (BCLC A HCC). METHODS This study enrolled 102 patients with BCLC A HCC who underwent surgical resection (n = 45) and RFA (n = 57); the patients were divided into two groups: OSP (n = 33) and non-OSP (n = 69). Overall survival (OS) and disease-free survival (DFS) curves for both the groups and treatment methods (surgery and RFA) were generated using the Kaplan-Meier method and compared using the log-rank test. Univariate analyses for OS and DFS were performed using log-rank test. Multivariate analyses were performed for factors that were significant at univariate analysis by Cox proportional hazard model. RESULTS Multivariate analysis showed that OSP (HR 2.44; 95 % CI 1.30-4.55; p < 0.01) and treatment (HR 0.57; 95 % CI 0.31-0.99; p = 0.05) were significant independent predictors of DFS; and treatment (HR, 0.30; 95 % CI 0.10-0.85; p = 0.03) was a significant independent predictor of OS in the non-OSP group, in which the OS rate was significantly lower in patients treated with RFA than in those treated by resection (p = 0.01). CONCLUSIONS OSP is a prognostic factor for BCLC A HCC treatment. Surgical approach was associated with a significantly better prognosis in patients without OSP compared to those who underwent RFA.
Collapse
Affiliation(s)
- Kyohei Abe
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | - Kenei Furukawa
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | | | - Yasuro Futagawa
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Hironori Shiozaki
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Onda
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Okamoto
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Yoshida T, Kojima H. Oral Drug Delivery Systems Applied to Launched Products: Value for the Patients and Industrial Considerations. Mol Pharm 2023; 20:5312-5331. [PMID: 37856863 DOI: 10.1021/acs.molpharmaceut.3c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Drug delivery systems (DDS) control the amount, rate, and site of administration of drug substances in the body as well as their release and ADME (absorption, distribution, metabolism, excretion). Among the various types of DDS, amount-controlled DDS for solubilization and absorption increase the bioavailability. Time- and amount-controlled DDS are controlled release formulations classified as (1) membrane-type, (2) matrix-type, (3) osmotic-type, and (4) ion-exchange type. Timed-release formulations also control the time and amount of release and the absorption of drugs. Site- and amount-controlled DDS are characterized by colonic delivery and intestinal lymph-targeting to improve release and ADME of drug substances. Finally, site-, time-, and amount-controlled DDS are gastroretentive formulations and local delivery in the oral cavity to improve site retention, release, and ADME of drugs. DDS can enhance efficacy, reduce adverse effects, and optimize the dosing frequency of various drug products to increase patient value. This review focuses on patient value and industrial considerations of launched oral DDS. We provide a technological overview of candidate and marketed DDS, as well as the pros/cons of the technologies for industrialization with consideration to excipients, manufacturing, and storage stability. Moreover, to demonstrate the usefulness of the technology and support the selection and development of the best technologies for patients, we also describe patient value from clinical studies and analyses, particularly with regard to increased new medical options, higher efficacy, reduced adverse effects, reduced number of doses and clinic visits, easier administration, higher quality of life, greater adherence, and satisfaction.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| |
Collapse
|
3
|
Lyon DE, Yao Y, Garrett T, Kelly DL, Cousin L, Archer KJ. Comparison of serum metabolomics in women with breast Cancer Prior to Chemotherapy and at 1 year: cardiometabolic implications. BMC Womens Health 2023; 23:221. [PMID: 37138260 PMCID: PMC10158001 DOI: 10.1186/s12905-023-02355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE Early-stage breast cancer (BC) is the second most common malignancy in women, worldwide. Early-detection and treatment advances have led to 5-year survival rates of 90% for early-stage breast cancer. However, the long-term morbidity of breast cancer remains high, with a majority of survivors facing increased risk of cardiometabolic conditions as well as secondary cancers. In particular, African American women with breast cancer experience higher morbidity and mortality than other women. Metabolomics is the comprehensive study of metabolites in biological samples to elucidate the role of monosaccharides, amino acids, and their respective metabolic pathways. Although some studies have found differential metabolites in women with breast cancer compared to normal controls, there has been little study of women with breast cancer across time and the active treatment trajectory. This study examines and compares the serum metabolomic profile of women with BC, prior to initial chemotherapy and at 1 year after inception of chemotherapy. METHODS This study examined serum metabolites through a secondary analysis of a longitudinal parent study (EPIGEN) of women diagnosed with early-stage BC. Participants were evaluated across 5 time points: prior to their receipt of chemotherapy (T1), at the time of their 4th chemotherapy treatment (T2), 6 months after the initiation of chemotherapy (T3), one year after the initiation of chemotherapy (T4) and two years after the initiation of chemotherapy (T5). This analysis focused on the metabolomic data from 70 participants from T1 to T4. Using ultra high-pressure liquid chromatography high resolution mass spectrometry (UHPLC-HRMS), we performed Friedman Rank Sum Test followed by Nemenyi post-hoc pairwise tests to identify which metabolite levels differed between time points, focusing on metabolites with a Benjamini-Hochberg false discovery rate (FDR) from the overall Friedman test < 0.05 and then specifically examined the p-values from the T1 vs. T4 pairwise comparison. RESULTS The untargeted serum metabolomics yielded a total of 2,395 metabolites identified on the basis of the accurate mass and MS/MS fragmentation, 1,264 of which were significant after Friedman's test (FDR < 0.05). The analysis then focused on the levels of 124 metabolites from the T1 vs. T4 post-hoc comparison that had a combined FDR < 0.05 and fold change (FC) > 2.0. Metabolite set enrichment analysis (MSEA) as part of Metaboanalyst 3.0 was performed to identify pathways that were significantly altered. The known metabolites identified from the functional analysis were used to evaluate the up and down regulated pathways. The 40metabolites from the Functional Analysis were mainly attributed to amino acids (specifically lysine regulation), fatty acids (particularly unsaturated) and steroid hormone synthesis (lysophosphatidic acid). CONCLUSION There were multiple significant changes in the serum metabolomic profile of women with breast cancer at one-year post inception of chemotherapy compared to pre-chemotherapy, most notably associated with lysine degradation, branched-chain amino acid synthesis, linoleic acid metabolism, tyrosine metabolism and biosynthesis of unsaturated fatty acids as the top 5 metabolic pathways. Some of these changes could be associated with metabolic perturbations that are consistent with heightened risk of cardiometabolic morbidity. Our results provide new insights into the mechanisms underlying potential heightened cardiovascular health risks in this population.
Collapse
Affiliation(s)
- Debra E Lyon
- College of Nursing, University of Florida, Gainesville, USA
| | - Yingwei Yao
- College of Nursing, University of Florida, Gainesville, USA
| | - Timothy Garrett
- College of Medicine, University of Florida, Gainesville, USA
| | | | | | - Kellie J Archer
- College of Public Health, the Ohio State University, Columbus, USA
| |
Collapse
|
4
|
Victoria-Montesinos D, García-Muñoz AM, Navarro-Marroco J, Lucas-Abellán C, Mercader-Ros MT, Serrano-Martínez A, Abellán-Aynés O, Barcina-Pérez P, Hernández-Sánchez P. Phase Angle, Handgrip Strength, and Other Indicators of Nutritional Status in Cancer Patients Undergoing Different Nutritional Strategies: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15071790. [PMID: 37049629 PMCID: PMC10097099 DOI: 10.3390/nu15071790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Malnutrition in cancer patients is one of the most influential factors in the evolution and mortality of such patients. To reduce the incidence of malnutrition, it is necessary to establish a correct nutritional intervention. For this purpose, precise tools and indicators must be developed to determine the patient’s condition. The main objective of this systematic review and meta-analysis was to analyze the relationship between different nutritional strategies, phase angle (PA), and handgrip strength in patients with cancer, with the secondary objectives being the modification of other indicators of nutritional status, such as weight and body mass index (BMI). A systematic review of randomized clinical trials was carried out in March 2023 in the databases PubMed, Web of Science, Cochrane, and Scopus. As a risk-of-bias tool, RoB 2.0 was utilized. A total of 8 studies with a total of 606 participants were included in the analysis. A significant increase in PA was observed after the different nutritional strategies (SMD: 0.43; 95% CI: 0.10 to 0.77; p = 0.01; I2 = 65.63%), also detecting a significant increase in handgrip strength (SMD: 0.27, 95% CI: 0.08 to 0.47; p = 0.01; I2 = 30.70%). A significant increase in PA and handgrip were observed in cancer patients subjected to different nutritional strategies. These results suggest that these indicators could be used in the nutritional and functional assessment of the patients.
Collapse
Affiliation(s)
| | - Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Julia Navarro-Marroco
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - María Teresa Mercader-Ros
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ana Serrano-Martínez
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | | | - Pablo Barcina-Pérez
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Pilar Hernández-Sánchez
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
5
|
Andrade MER, Trindade LM, Leocádio PCL, Leite JIA, Dos Reis DC, Cassali GD, da Silva TF, de Oliveira Carvalho RD, de Carvalho Azevedo VA, Cavalcante GG, de Oliveira JS, Fernandes SOA, Generoso SV, Cardoso VN. Association of Fructo-oligosaccharides and Arginine Improves Severity of Mucositis and Modulate the Intestinal Microbiota. Probiotics Antimicrob Proteins 2023; 15:424-440. [PMID: 36631616 DOI: 10.1007/s12602-022-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.
Collapse
Affiliation(s)
- Maria Emília Rabelo Andrade
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luisa Martins Trindade
- Departamento Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jacqueline Isaura Alvarez Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Fernando da Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gregório Grama Cavalcante
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jamil Silvano de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Vasconcelos Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Professor Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
6
|
Xu Q, Zhang Z, Tang M, Xing C, Chen H, Zheng K, Zhao Z, Zhou S, Zhao AZ, Li F, Mu Y. Endogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathway. Free Radic Biol Med 2023; 201:14-25. [PMID: 36906190 DOI: 10.1016/j.freeradbiomed.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Cisplatin is a chemotherapy medication used to treat a wide range of cancers. A common side effect of cisplatin is myelosuppression. Research suggests that oxidative damages are strongly and consistently related to myelosuppression during cisplatin treatment. ω-3 polyunsaturated fatty acids (PUFAs) can enhance the antioxidant capacity of cells. Herein, we investigated the protective benefit of endogenous ω-3 PUFAs on cisplatin-induced myelosuppression and the underlying signaling pathways using a transgenic mfat-1 mouse model. The expression of mfat-1 gene can increase endogenous levels of ω-3 PUFAs by enzymatically converting ω-6 PUFAs. Cisplatin treatment reduced peripheral blood cells and bone marrow nucleated cells, induced DNA damage, increased the production of reactive oxygen species, and activated p53-mediated apoptosis in bone marrow (BM) cells of wild-type mice. In the transgenics, the elevated tissue ω-3 PUFAs rendered a robust preventative effect on these cisplatin-induced damages. Importantly, we identified that the activation of NRF2 by ω-3 PUFAs could trigger an antioxidant response and inhibit p53-mediated apoptosis by increasing the expression of MDM2 in BM cells. Thus, endogenous ω-3 PUFAs enrichment can strongly prevent cisplatin-induced myelosuppression by inhibiting oxidative damage and regulating the NRF2-MDM2-p53 signaling pathway. Elevation of tissue ω-3 PUFAs may represent a promising treatment strategy to prevent the side effects of cisplatin.
Collapse
Affiliation(s)
- Qihua Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hansi Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Kexin Zheng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Astaxanthin decreases the growth-inhibitory dose of cytarabine and inflammatory response in the acute lymphoblastic leukemia cell line NALM-6. Mol Biol Rep 2022; 49:6415-6422. [PMID: 35441937 DOI: 10.1007/s11033-022-07452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In spite of the great progress in acute lymphoblastic leukemia (ALL) treatment, a large number of patients still suffer from chemotherapy drug toxicity. As a routine medication for ALL treatment, cytarabine (Ara-C) has many side effects on the patients. Astaxanthin (ASX), on the other hand, is a carotenoid with antioxidant, anti-inflammatory and anti-cancer properties. PURPOSE The present study investigated the effects of ASX in combination with Ara-C on cell proliferation, apoptosis induction, and cell cycle arrest in NALM-6 cell line. METHODS NALM6 cells were treated with different concentrations of ASX, Ara-C, and their co-treatment. Cytotoxic effects were evaluated using MTT assay. After treating the cells with the IC50 dose of ASX, Ara-C and their co-treatment, we studied apoptosis induction, cell cycle arrest, and expression of apoptotic, anti-apoptotic, and inflammatory genes. RESULT MTT assay demonstrated that co-treatment of cytarabine and ASX had greater cytotoxicity effects compared with the IC50 dose of Ara-C alone. After 48 h of treatment of NALM-6 cells with the combination dose, expression levels of apoptotic genes (P53, caspase-8, 3), the anti-apoptotic gene (Bcl-xL) and inflammatory genes (IL-6, TNF-α) changed significantly compared to the untreated group (p < 0.05). CONCLUSIONS Co-treatment of ASX and Ara-C has synergism effects on apoptosis pathways, cell proliferation inhibition, and decreased inflammation.
Collapse
|
8
|
Sivakumar R, Sachin S, Priyadarshini R, Ghosh S. Sustainable production of EPA-rich oil from microalgae: Towards an algal biorefinery. J Appl Microbiol 2022; 132:4170-4185. [PMID: 35238451 DOI: 10.1111/jam.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Utilization of sustainable natural resources such as microalgae has been considered for the production of biofuels, aquaculture feed, high-value bioactives such as omega-3 fatty acids, carotenoids, etc. Eicosapentaenoic acid (EPA) is an omega-3 fatty acid present in fish oil, which is of physiological importance to both humans and fishes. Marine microalgae are sustainable sources of lipid rich in EPA and different species have been explored for the production of EPA as a single product. There has been a rising interest in the concept of a multi-product biorefinery, focusing on maximum valorization of the algal biomass. Targeting one or more value-added compounds in a biorefinery scenario can improve the commercial viability of low-value products like triglycerides for biofuel. This approach has been viewed by technologists and experts as a sustainable and economically feasible possibility for the large-scale production of microalgae for its potential applications in biodiesel and jet fuel production, nutraceuticals, animal and aquaculture feeds, etc. In this review paper, we describe the recent developments in the production of high-value EPA-rich oil from microalgae, emphasizing on the upstream and downstream bioprocess techniques, and the advantages of considering an EPA-rich oil based biorefinery.
Collapse
Affiliation(s)
- Rohith Sivakumar
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sharika Sachin
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rajashri Priyadarshini
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjoy Ghosh
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
9
|
Tao X, Zhou Q, Rao Z. Efficacy of ω-3 Polyunsaturated Fatty Acids in Patients with Lung Cancer Undergoing Radiotherapy and Chemotherapy: A Meta-Analysis. Int J Clin Pract 2022; 2022:6564466. [PMID: 35910071 PMCID: PMC9303080 DOI: 10.1155/2022/6564466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Radiotherapy and chemotherapy in patients with lung cancer can lead to a series of problems such as malnutrition and inflammatory reaction. Some studies have shown that ω-3 polyunsaturated fatty acids (PUFAs) could improve malnutrition and regulate inflammatory reaction in these patients, but no relevant meta-analysis exists. METHODS We systematically searched randomized controlled trials of ω-3 PUFAs in the adjuvant treatment of lung cancer in the PubMed, EMBASE, Cochrane Library, Web of Science, Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), and Wanfang databases. Relevant outcomes were extracted, and we pooled standardized mean differences (SMDs) using a random or fixed-effects model. The risk of bias was evaluated according to the Cochrane Handbook (version 15.1). The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS A total of 7 studies were included. The SMDs (95% CI) of body weight change, albumin change, energy intake, and protein intake at the end of intervention were 1.15 (0.50, 1.80), 0.60 (0.11, 1.09), 0.39 (-0.10, 0.89), and 0.27 (-0.04, 0.58), respectively. The SMDs (95% CI) of CRP change and TNF-α change were -3.44 (-6.15, -0.73) and -1.63 (-2.53, -0.73), respectively. CONCLUSIONS ω-3 PUFAs can improve nutritional status and regulate indicators of inflammation in patients with lung cancer undergoing radiotherapy and chemotherapy. This study was registered in the PROSPERO (registration number: CRD42022307699).
Collapse
Affiliation(s)
- Xin Tao
- Department of Clinical Nutrition, Suining Central Hospital, Suining, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Bhullar AS, Rivas-Serna IM, Anoveros-Barrera A, Dunichand-Hoedl A, Bigam D, Khadaroo RG, McMullen T, Bathe O, Putman CT, Baracos V, Clandinin MT, Mazurak VC. Depletion of essential fatty acids in muscle is associated with shorter survival of cancer patients undergoing surgery-preliminary report. Sci Rep 2021; 11:23006. [PMID: 34836998 PMCID: PMC8626431 DOI: 10.1038/s41598-021-02269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Emerging studies are reporting associations between skeletal muscle abnormalities and survival in cancer patients. Cancer prognosis is associated with depletion of essential fatty acids in erythrocytes and plasma in humans. However the relationship between skeletal muscle membrane fatty acid composition and survival is unknown. This study investigates the relationship between fatty acid content of phospholipids in skeletal muscle and survival in cancer patients. Rectus abdominis biopsies were collected during cancer surgery from 35 patients diagnosed with cancer. Thin-layer and gas chromatography were used for quantification of phospholipid fatty acids. Cutpoints for survival were defined using optimal stratification. Median survival was between 450 and 500 days when patients had arachidonic acid (AA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle phospholipid below the cut-point compared to 720-800 days for patients above. Cox regression analysis revealed that low amounts of AA, EPA and DHA are risk factors for death. The risk of death remained significant for AA [HR 3.5 (1.11-10.87), p = 0.03], EPA [HR 3.92 (1.1-14.0), p = 0.04] and DHA [HR 4.08 (1.1-14.6), p = 0.03] when adjusted for sex. Lower amounts of essential fatty acids in skeletal muscle membrane is a predictor of survival in cancer patients. These results warrant investigation to restore bioactive fatty acids in people with cancer.
Collapse
Affiliation(s)
- Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Abha Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - David Bigam
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Oliver Bathe
- Departments of Surgery and Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Vickie Baracos
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Michael T Clandinin
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Bilyk O, Hamedi B, Dutta I, Newell M, Bukhari AB, Gamper AM, McVea RC, Liu J, Schueler J, Siegers GM, Field CJ, Postovit LM. Docosahexaenoic Acid in the Inhibition of Tumor Cell Growth in Preclinical Models of Ovarian Cancer. Nutr Cancer 2021; 74:1431-1445. [PMID: 34286635 DOI: 10.1080/01635581.2021.1952453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a strong rationale for investigating nutritional interventions with docosahexaenoic acid (DHA) in cancer prevention and therapy; however, the effects of DHA on ovarian cancer (OC) have not been well studied. Here, we investigated if DHA alone and in combination with carboplatin reduces OC cell growth in vitro. In vivo, we used a high-grade serous OC patient-derived xenograft (PDX) mouse model to investigate if DHA affects OC growth and enhances the anticancer actions of carboplatin. We showed synergistic cell killing by DHA and carboplatin in DHA-resistant Kuramochi and SKOV3 OC cells, which corresponded with increased DHA incorporation into whole-cell membrane phospholipids (P < 0.05). In vivo, feeding mice a diet supplemented with 3.9% (w/w of fat) DHA resulted in a significant reduction in PDX growth with and without carboplatin (P < 0.05). This reduction in tumor growth was accompanied by an increased tumor necrotic region (P < 0.05) and improved survival. Plasma membranes in tumors and livers excised from mice fed a DHA diet had ∼ twofold increase in DHA incorporation as compared with mice fed a control diet. Our findings indicate that DHA supplementation reduces cancer cell growth and enhances the efficacy of carboplatin in preclinical models of OC through increased apoptosis and necrosis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1952453.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Bahareh Hamedi
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Indrani Dutta
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Marnie Newell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali B Bukhari
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Armin M Gamper
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rojine C McVea
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiahui Liu
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Gabrielle M Siegers
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne-Marie Postovit
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Podpeskar A, Crazzolara R, Kropshofer G, Hetzer B, Meister B, Müller T, Salvador C. Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients 2021; 13:1800. [PMID: 34073158 PMCID: PMC8226718 DOI: 10.3390/nu13061800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malnutrition is common in children with cancer and is associated with adverse clinical outcomes. The need for supportive care is becoming ever more evident and the role of nutrition in oncology is still not sufficiently understood. In particular, the consequences of macro- and micronutrient deficiencies require further research. As epidemiological data suggest anti-tumoral properties of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), we reviewed the role of nutrition and n-3 supplementation in pediatric oncology. METHODS A comprehensive literature search was conducted on PubMed through 5 February 2021 to select meta-analyses, systematic reviews, observational studies, and individual randomized controlled trials (RCTs) on macro- and micronutrient supplementation in pediatric oncology. The search strategy included the following medical subject headings (MeSH) and keywords: "childhood cancer", "pediatric oncology", "nutritional status", "malnutrition", and "omega-3-fatty-acids". The reference lists of all relevant articles were screened to include potentially pertinent studies. RESULTS We summarize evidence about the importance of adequate nutrition in childhood cancer and the role of n-3 PUFAs and critically interpret findings. Possible effects of supplementation on the nutritional status and benefits during chemotherapy are discussed as well as strategies for primary and secondary prevention. CONCLUSION We here describe the obvious benefits of omega-3 supplementation in childhood cancer. Further large scale clinical trials are required to verify potential anti-cancer effects of n-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christina Salvador
- Department of Pediatrics I, Division of Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.P.); (R.C.); (G.K.); (B.H.); (B.M.); (T.M.)
| |
Collapse
|
13
|
Zhang AC, De Silva MEH, MacIsaac RJ, Roberts L, Kamel J, Craig JP, Busija L, Downie LE. Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: a systematic review and meta-analysis. Nutr Rev 2020; 78:323-341. [PMID: 31532492 DOI: 10.1093/nutrit/nuz054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Peripheral nerve damage can occur in a variety of systemic conditions and can have a profound impact on functional and psychological health. Currently, therapeutic interventions for peripheral nerve damage are limited. OBJECTIVE The aim of this systematic review, conducted in accordance with the Cochrane Collaboration's handbook and reported according to the PRISMA checklist, was to evaluate the efficacy and safety of omega-3 oral supplements for improving peripheral nerve structure and function. DATA SOURCES PubMed, Embase, and Cochrane databases, along with clinical trial registries, were searched from inception to February 2019. Evidence was identified, critically appraised, and synthesized, and the certainty of evidence was appraised using the Grading of Recommendations Assessment, Development and Evaluation approach. STUDY SELECTION Randomized controlled trials assessing the effects of omega-3 oral supplementation on outcomes of peripheral nerve structure, peripheral nerve function, or both were eligible for inclusion. Titles and abstracts of identified articles were independently assessed for potential eligibility by 2 review authors. For studies judged as eligible or potentially eligible, full text articles were retrieved and independently assessed by 2 review authors to determine eligibility; disagreements were resolved by consensus. DATA EXTRACTION Fifteen trials were included. Two clinically similar studies that investigated the effect of omega-3 supplementation in individuals receiving chemotherapy were meta-analyzed. Pooled data showed a reduced incidence of peripheral neuropathy (RR = 0.58; 95%CI, 0.43-0.77) and a preservation of sensory nerve action potential amplitudes with omega-3 supplementation compared with placebo (MD = 4.19 µV; 95%CI; 2.19-6.19). CONCLUSION This review finds, with low certainty, that omega-3 supplementation attenuates sensory loss and reduces the incidence of neuropathy secondary to oxaliplatin and paclitaxel treatment relative to placebo. There is currently limited evidence to ascertain whether omega-3 supplementation is beneficial in other systemic conditions characterized by peripheral nerve damage. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD 42018086297.
Collapse
Affiliation(s)
- Alexis Ceecee Zhang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | | | - Richard J MacIsaac
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Leslie Roberts
- Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Jordan Kamel
- Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ljoudmila Busija
- Biostatistics Unit, Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I. Fatty acid binding protein 7 mediates linoleic acid-induced cell death in triple negative breast cancer cells by modulating 13-HODE. Biochimie 2020; 179:23-31. [PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Abstract
Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
Collapse
Affiliation(s)
- Soke Chee Kwong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anthony Rhodes
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nur Aishah Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Bae S, Kim MK, Kim HS, Moon YA. Arachidonic acid induces ER stress and apoptosis in HT-29 human colon cancer cells. Anim Cells Syst (Seoul) 2020; 24:260-266. [PMID: 33209199 PMCID: PMC7646553 DOI: 10.1080/19768354.2020.1813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have important functions in biological systems. The beneficial effects of dietary PUFAs against inflammatory diseases, cardiovascular diseases, and metabolic disorders have been shown. Studies using cancer cells have presented the anti-tumorigenic effects of docosahexaenoic acid (DHA), an n-3 PUFA, while arachidonic acid (AA), an n-6 PUFA, has been shown to elicit both pro- and anti-tumorigenic effects. In the current study, the anti-tumorigenic effects of AA were evaluated in HT-29 human colon cancer cells. Upon adding AA in the media, more than 90% of HT-29 cells died, while the MCF7 cells showed good proliferation. AA inhibited the expression of SREBP-1 and its target genes that encode enzymes involved in fatty acid synthesis. As HT-29 cells contained lower basal levels of fatty acid synthase, a target gene of SREBP-1, than that in MCF7 cells, the inhibitory effects of AA on the fatty acid synthase levels in HT-29 cells were much stronger than those in MCF-7 cells. When oleic acid (OA), a monounsaturated fatty acid that can be synthesized endogenously, was added along with AA, the HT-29 cells were able to proliferate. These results suggested that HT-29 cells could not synthesize enough fatty acids for cell division in the presence of AA because of the suppression of lipogenesis. HT-29 cells may incorporate more AA into their membrane phospholipids to proliferate, which resulted in ER stress, thereby inducing apoptosis. AA could be used as an anti-tumorigenic agent against cancer cells in which the basal fatty acid synthase levels are low.
Collapse
Affiliation(s)
- Sijeong Bae
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Min-Kyoung Kim
- Department of New Drug Development, Inha University College of Medicine, Incheon, South Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
16
|
Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, Weimann A, Calder PC. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020; 12:E2555. [PMID: 32846900 PMCID: PMC7551800 DOI: 10.3390/nu12092555] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Life expectancy is increasing and so is the prevalence of age-related non-communicable diseases (NCDs). Consequently, older people and patients present with multi-morbidities and more complex needs, putting significant pressure on healthcare systems. Effective nutrition interventions could be an important tool to address patient needs, improve clinical outcomes and reduce healthcare costs. Inflammation plays a central role in NCDs, so targeting it is relevant to disease prevention and treatment. The long-chain omega-3 polyunsaturated fatty acids (omega-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to reduce inflammation and promote its resolution, suggesting a beneficial role in various therapeutic areas. An expert group reviewed the data on omega-3 LCPUFAs in specific patient populations and medical conditions. Evidence for benefits in cognitive health, age- and disease-related decline in muscle mass, cancer treatment, surgical patients and critical illness was identified. Use of DHA and EPA in some conditions is already included in some relevant guidelines. However, it is important to note that data on the effects of omega-3 LCPUFAs are still inconsistent in many areas (e.g., cognitive decline) due to a range of factors that vary amongst the trials performed to date; these factors include dose, timing and duration; baseline omega-3 LCPUFA status; and intake of other nutrients. Well-designed intervention studies are required to optimize the effects of DHA and EPA in specific patient populations and to develop more personalized strategies for their use.
Collapse
Affiliation(s)
- Barbara Troesch
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy;
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, INSERM 1027, Centre Hospitalo-Universitaire de Toulouse, 31300 Toulouse, France;
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Ines Warnke
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Arved Weimann
- Clinic for General, Visceral and Oncological Surgery, St. Georg gGmbH Clinic, 04129 Leipzig, Germany;
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
17
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. J Clin Med 2020; 9:jcm9041095. [PMID: 32290558 PMCID: PMC7230725 DOI: 10.3390/jcm9041095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that lipid composition in cancer tissues may undergo multiple alterations. However, no comprehensive analysis of various lipid groups in colorectal cancer (CRC) tissue has been conducted thus far. To address the problem in question, we determined the contents of triacylglycerols (TG), an energetic substrate, various lipids necessary for cell membrane formation, among them phospholipids (phosphatidylcholine, phosphatidylethanolamine), sphingolipids (sphingomyelin) and cholesterol (free, esterified and total), and fatty acids included in complex lipids. 1H-nuclear magnetic resonance (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the lipid composition of colon cancer tissue and normal large intestinal mucosa from 25 patients. Compared with normal tissue, cancer tissues had significantly lower TG content, along with elevated levels of phospholipids, sphingomyelin, and cholesterol. Moreover, the content of oleic acid, the main component of TG, was decreased in cancer tissues, whereas the levels of saturated fatty acids and polyunsaturated fatty acids (PUFAs), which are principal components of polar lipids, were elevated. These lipidome rearrangements were associated with the overexpression of genes associated with fatty acid oxidation, and the synthesis of phospholipids and cholesterol. These findings suggest that reprogramming of lipid metabolism might occur in CRC tissue, with a shift towards increased utilization of TG for energy production and enhanced synthesis of membrane lipids, necessary for the rapid proliferation of cancer cells.
Collapse
|
19
|
Klassen P, Cervantes M, Mazurak VC. N - 3 fatty acids during chemotherapy: toward a higher level of evidence for clinical application. Curr Opin Clin Nutr Metab Care 2020; 23:82-88. [PMID: 32004238 DOI: 10.1097/mco.0000000000000627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Recommendations for intakes of n - 3 fatty acids (FAs) in patients who are receiving chemotherapy for cancer are based on weak evidence. This review highlights themes within the emergent literature to suggest improvements in the design of studies that provide n - 3 FA supplements concurrent with cytotoxic agents. RECENT FINDINGS Following earlier research in animal models and human pilot studies, recent human studies have evaluated the effect of providing n - 3 FAs during delivery of single agent and multiagent chemotherapy regimens for breast and gastro-intestinal cancers. Regimens were based on platinum compounds, fluoropyrimidines or both, and a variety of additional agents. Tumor location and stage, supplement dose and duration, and endpoints were dissimilar across studies. Overall, the recent research continues to support the safety and tolerability of n - 3 FA supplementation with chemotherapy and provides additional evidence, albeit weak, for enhanced tumor response, maintenance of weight and muscle, and reduction in inflammation and toxicities in the host across multiple cancer sites and chemotherapy regimens. SUMMARY The barriers to implementation in practice remain small study sizes, variations in supplement dosage and methodology, and differences in primary endpoints. Randomized, blinded trials with a justifiable sample size, adequate doses, monitored compliance and measures of clinically important endpoints are required to move these findings to a higher level of evidence for implementation into clinical practice.
Collapse
Affiliation(s)
- Pamela Klassen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
20
|
Yoshida T, Sako K, Kondo H. Design of novel tacrolimus formulations with chemically synthesized oils for oral lymphatic delivery. Drug Dev Ind Pharm 2020; 46:219-226. [PMID: 31976759 DOI: 10.1080/03639045.2020.1721525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High consumption of oil formulations has been reported to reduce the blood exposure of drugs like tacrolimus. Consumption of oil formulations has also been shown to inhibit T-cell production of interleukin-2 (IL-2) compared to solid dispersion formulations (SDFs). However, a large amount of oil causes gastrointestinal side effects such as diarrhea and low compliance. Here, we investigated the feasibility of reducing the amount of oil and substitution of chemically synthetized oils for natural oils in these formulations. Reducing the amount of sunflower oil increased blood tacrolimus exposure despite sufficient suppression of IL-2 production. While medium-chain triglyceride (MCT) increased tacrolimus blood exposure, addition of 10% glyceryl monostearate (GMS) to MCT significantly decreased drug blood exposure without requiring a large amount of oil (p < .05). Effects of the contents of GMS in the MCT/GMS formulations, and fatty acid composition in GMS on drug blood exposure were also investigated. The results indicated that both the amount and type of oil were important for maintaining a good balance between a reduction in blood exposure and sufficient IL-2 suppression. The ratio of drug concentration in lymphocytes to that in whole blood after dosing with an oil formulation was significantly higher than that after administration of the SDF (p < .01). These results indicate the feasibility of developing oral oil tacrolimus formulations to reduce systemic side effects and maintain high efficacy for practical use in patients.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs, Astellas Pharma Inc, Yaizu, Japan
| | | | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
Dijk FJ, van Dijk M, Dorresteijn B, van Norren K. DPA shows comparable chemotherapy sensitizing effects as EPA upon cellular incorporation in tumor cells. Oncotarget 2019; 10:5983-5992. [PMID: 31666929 PMCID: PMC6800265 DOI: 10.18632/oncotarget.27236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary supplementation with ω-3 polyunsaturated fatty acids (PUFAs) has been reported to enhance the sensitivity of tumor cells towards chemotherapy. Most enhancing effects are described for ω-3 PUFAs EPA and DHA; less evidence is available with the intermediate DPA. We studied the chemotherapy enhancing effects of EPA, DPA and DHA in murine colon C26 adenocarcinoma cells and showed that DPA displayed similar chemosensitizing effects as EPA. Moreover, EPA supplementation increased cellular DPA content. In a C26 tumor-bearing mouse model, we studied the incorporation of ω-3 PUFA in tumor and skeletal muscle after a diet with different ω-3 PUFA sources. Although little DPA was present in the fatty acid food sources, in those that contained considerable EPA concentrations, DPA levels were higher in tumor and muscle tissue. From these studies, we conclude that EPA and DPA show chemosensitizing effects and that intake of EPA or EPA-containing nutrition leads to increased cellular DPA content by elongation. These findings support the use of ω-3 PUFA containing nutritional supplementations in cancer patients during chemotherapy treatment.
Collapse
Affiliation(s)
- Francina J Dijk
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Miriam van Dijk
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Bram Dorresteijn
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Klaske van Norren
- Nutritional Biology, Department of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Newell M, Mackey JR, Bigras G, Alvarez-Camacho M, Goruk S, Ghosh S, Schmidt A, Miede D, Chisotti A, Postovit L, Baker K, Mazurak V, Courneya K, Berendt R, Dong WF, Wood G, Basi SK, Joy AA, King K, Meza-Junco J, Zhu X, Field C. Comparing docosahexaenoic acid (DHA) concomitant with neoadjuvant chemotherapy versus neoadjuvant chemotherapy alone in the treatment of breast cancer (DHA WIN): protocol of a double-blind, phase II, randomised controlled trial. BMJ Open 2019; 9:e030502. [PMID: 31530611 PMCID: PMC6756327 DOI: 10.1136/bmjopen-2019-030502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Neoadjuvant chemotherapy for breast cancer treatment is prescribed to facilitate surgery and provide confirmation of drug-sensitive disease, and the achievement of pathological complete response (pCR) predicts improved long-term outcomes. Docosahexaenoic acid (DHA) has been shown to reduce tumour growth in preclinical models when combined with chemotherapy and is known to beneficially modulate systemic immune function. The purpose of this trial is to investigate the benefit of DHA supplementation in combination with neoadjuvant chemotherapy in patients with breast cancer. METHODS AND ANALYSIS This is a double-blind, phase II, randomised controlled trial of 52 women prescribed neoadjuvant chemotherapy to test if DHA supplementation enhances chemotherapy efficacy. The DHA supplementation group will take 4.4 g/day DHA orally, and the placebo group will take an equal fat supplement of vegetable oil. The primary outcome will be change in Ki67 labelling index from prechemotherapy core needle biopsy to definitive surgical specimen. The secondary endpoints include assessment of (1) DHA plasma phospholipid content; (2) systemic immune cell types, plasma cytokines and inflammatory markers; (3) tumour markers for apoptosis and tumour infiltrating lymphocytes; (4) rate of pCR in breast and in axillary nodes; (5) frequency of grade 3 and 4 chemotherapy-associated toxicities; and (6) patient-perceived quality of life. The trial has 81% power to detect a significant between-group difference in Ki67 index with a two-sided t-test of less than 0.0497, and accounts for 10% dropout rate. ETHICS AND DISSEMINATION This study has full approval from the Health Research Ethics Board of Alberta - Cancer Committee (Protocol #: HREBA.CC-18-0381). We expect to present the findings of this study to the scientific community in peer-reviewed journals and at conferences. The results of this study will provide evidence for supplementing with DHA during neoadjuvant chemotherapy treatment for breast cancer. TRIAL REGISTRATION NUMBER NCT03831178.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sunita Ghosh
- Alberta Health Services, Edmonton, Alberta, Canada
| | | | | | - Ann Chisotti
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Kerry Courneya
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Berendt
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Wei-Feng Dong
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - George Wood
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Anil Abraham Joy
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen King
- Alberta Health Services, Edmonton, Alberta, Canada
| | | | - Xiaofu Zhu
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
O'Connell TM, Pin F, Couch ME, Bonetto A. Treatment with Soluble Activin Receptor Type IIB Alters Metabolic Response in Chemotherapy-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091222. [PMID: 31438622 PMCID: PMC6770556 DOI: 10.3390/cancers11091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
Some chemotherapeutic agents have been shown to lead to the severe wasting syndrome known as cachexia resulting in dramatic losses of both skeletal muscle and adipose tissue. Previous studies have shown that chemotherapy-induced cachexia is characterized by unique metabolic alterations. Recent results from our laboratory and others have shown that the use of ACVR2B/Fc, a soluble form of the activin receptor 2B (ACVR2B), can mitigate muscle wasting induced by chemotherapy, although the underlying mechanisms responsible for such protective effects are unclear. In order to understand the biochemical mechanisms through which ACVR2B/Fc functions, we employed a comprehensive, multi-platform metabolomics approach. Using both nuclear magnetic resonance (NMR) and mass-spectrometry (MS), we profiled the metabolome of both serum and muscle tissue from four groups of mice including (1) vehicle, (2) the chemotherapeutic agent, Folfiri, (3) ACVR2B/Fc alone, and (4) combined treatment with both Folfiri and ACVR2B/Fc. The metabolic profiles demonstrated large effects with Folfiri treatment and much weaker effects with ACVR2B/Fc treatment. Interestingly, a number of significant effects were observed in the co-treatment group, with the addition of ACVR2B/Fc providing some level of rescue to the perturbations induced by Folfiri alone. The most prominent of these were a normalization of systemic glucose and lipid metabolism. Identification of these pathways provides important insights into the mechanism by which ACVR2B/Fc protects against chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E Couch
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Laviano A, Calder PC, Schols AMWJ, Lonnqvist F, Bech M, Muscaritoli M. Safety and Tolerability of Targeted Medical Nutrition for Cachexia in Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Controlled Pilot Trial. Nutr Cancer 2019; 72:439-450. [DOI: 10.1080/01635581.2019.1634746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Philip C. Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Fredrik Lonnqvist
- Department of Molecular Medicine and Surgery and the Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Dietary patterns and their relationships to sarcopenia in Portuguese patients with gastrointestinal cancer: An exploratory study. Nutrition 2019; 63-64:193-199. [PMID: 31029047 DOI: 10.1016/j.nut.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this exploratory study was to identify the main dietary patterns of a Portuguese population of patients with gastrointestinal cancer and to analyze their association with sarcopenia. METHODS This was a prospective study with a consecutive sample of 100 patients with gastrointestinal cancer enrolled at diagnosis. Dietary intake was assessed with a semiquantitative Food Frequency Questionnaire, and dietary patterns were obtained with principal component analysis. Nutritional assessment was done using the Patient-Generated Subjective Global Assessment, and body composition was evaluated with anthropometric measures and computed tomography image processing obtained at the third lumbar vertebrae. Sex and body mass index specific cutoffs were used to define sarcopenia. RESULTS Four major patterns were identified: high-fat dairy products, fried snacks, and processed meat diet; legumes, vegetables, and fruit diet; fat and fish diet; and alcohol, cereal, and animal protein diet. On simple logistic regression, the occurrence of sarcopenia in participants in the second tertile (odds ratio [OR] 0.30; 95% confidence interval [CI] 0.10-0.83; P = 0.02) and third tertile (OR 0.24; 95% CI 0.08-0.69; P = 0.01) of adherence to the high-fat and fish diet was reduced compared with the first tertile. On multiple logistic regression, the second tertile (OR 0.38, 95% CI 0.11-1.19; P = 0.10) of the fat and fish dietary pattern maintained a trend toward a reduction of the odds of sarcopenia compared with the first tertile, independently of calorie intake, age, disease location, and stage. CONCLUSIONS The fat and fish dietary pattern was associated with lower odds of sarcopenia in this population of patients with gastrointestinal cancer.
Collapse
|
26
|
Lordan R, Tsoupras A, Zabetakis I. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. Adv Nutr 2019; 10:148-164. [PMID: 30721934 PMCID: PMC6370273 DOI: 10.1093/advances/nmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The role of unresolved inflammation in cancer progression and metastasis is well established. Platelet-activating factor (PAF) is a key proinflammatory mediator in the initiation and progression of cancer. Evidence suggests that PAF is integral to suppression of the immune system and promotion of metastasis and tumor growth by altering local angiogenic and cytokine networks. Interactions between PAF and its receptor may have a role in various digestive, skin, and hormone-dependent cancers. Diet plays a critical role in the prevention of cancer and its treatment. Research indicates that the Mediterranean diet may reduce the incidence of several cancers in which dietary PAF inhibitors have a role. Dietary PAF inhibitors such as polar lipids have demonstrated inhibitory effects against the physiological actions of PAF in cancer and other chronic inflammatory conditions in vitro and in vivo. In addition, experimental models of radiotherapy and chemotherapy demonstrate that inhibition of PAF as adjuvant therapy may lead to more favorable outcomes. Although promising, there is limited evidence on the potential benefits of dietary PAF inhibitors on cancer prevention or treatment. Therefore, further extensive research is required to assess the effects of various dietary factors and PAF inhibitors and to elucidate the mechanisms in prevention of cancer progression and metastasis at a molecular level.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Food Funct 2018; 9:4429-4442. [PMID: 30070303 DOI: 10.1039/c8fo00977e] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antioxidant (AO) efficiencies and the distributions of gallic acid (GA) and a series of alkyl gallates (propyl, PG, butyl, BG, octyl, OG and lauryl, LG) were determined in intact fish oil-in-water emulsions. The efficiency of the AOs in inhibiting the oxidation of the fish oil lipids increases upon increasing AO hydrophobicity up to a maximum (∼3-fold) at the octyl derivative, after which the efficiency decreases (LG). The observed non-linear variation in the efficiency with the AO alkyl chain length parallels those of the percentages of AOs in the interfacial region and of their interfacial concentrations, but does not parallel that of the percentage of AOs in the oil region. The interfacial AO concentrations are 20-100 times greater than the stoichiometric (added) antioxidant concentration, depending on the interfacial surfactant volume fraction ΦI, meanwhile the AO concentrations in the oil are similar or slightly higher (1-6 fold) and the concentrations in the aqueous region are much smaller (0.8-10 fold). The effects of the oil to water (o : w) ratio on the interfacial concentrations are complex and depend on both the hydrophobicity of the AO and ΦI. An increase in the o : w ratio favors incorporation of hydrophilic AOs to the interfacial region of emulsions but it decreases the incorporation of hydrophobic AOs. Results provide, for the first time, experimental evidence supporting the interfacial region of emulsions as the main site of production of lipid radicals. Results also provide physical evidence that the efficiency of AOs depends on their interfacial concentrations, which can be modulated by increasing the hydrophobicity of the AOs and by employing the minimum amount of surfactant necessary to stabilize the emulsions. Changes in the o : w ratio can also be used to modulate the interfacial concentrations of hydrophobic (OG, LG, and to a lesser extent BG) or hydrophilic (GA) AOs, but not those of AOs of intermediate hydrophobicity (PG).
Collapse
Affiliation(s)
- J Freiría-Gándara
- Universidad de Vigo, Fac. Química, Dpto. Químic- Física, 36310 Vigo, Spain.
| | | | | | | |
Collapse
|
28
|
Tylichová Z, Neča J, Topinka J, Milcová A, Hofmanová J, Kozubík A, Machala M, Vondráček J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem Toxicol 2018; 124:374-384. [PMID: 30572064 DOI: 10.1016/j.fct.2018.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
29
|
Immune regulation and anti-cancer activity by lipid inflammatory mediators. Int Immunopharmacol 2018; 65:580-592. [PMID: 30447537 DOI: 10.1016/j.intimp.2018.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with poor outcomes, neutrophilia and lymphocytopenia. This contrasts with increased lymphocyte infiltration of tumors, which is correlated with improved outcomes. Lifestyle parameters, such as obesity and diets with high levels of saturated fat and/or omega (ω)-6 polyunsaturated fatty acids (PUFAs), can influence these inflammatory parameters, including an increase in extramedullary myelopoiesis (EMM). While tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, lifestyle choices also contribute to inflammation, abnormal pathology and leukocyte infiltration of tumors. A relationship between obesity and high-fat diets (notably saturated fats in Western diets) and inflammation, tumor incidence, metastasis and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of an inflammatory microenvironment and targeted drugs to inhibit the clinical sequelae are poorly understood. Thus, modifications of obesity and dietary fat may provide preventative or therapeutic approaches to control tumor-associated inflammation and disease progression. Currently, the majority of basic and clinical research does not differentiate between obesity and fatty acid consumption as mediators of inflammatory and neoplastic processes. In this review, we discuss the relationships between dietary PUFAs, inflammation and neoplasia and experimental strategies to improve our understanding of these relationships. We conclude that dietary composition, notably the ratio of ω-3 vs ω-6 PUFA regulates tumor growth and the frequency and sites of metastasis that together, impact overall survival (OS) in mice.
Collapse
|
30
|
Zajdel A, Kałucka M, Chodurek E, Wilczok A. DHA but not AA Enhances Cisplatin Cytotoxicity in Ovarian Cancer Cells. Nutr Cancer 2018; 70:1118-1125. [DOI: 10.1080/01635581.2018.1497673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alicja Zajdel
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Magdalena Kałucka
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Ewa Chodurek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Adam Wilczok
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
31
|
Ilag LL. Are Long-Chain Polyunsaturated Fatty Acids the Link between the Immune System and the Microbiome towards Modulating Cancer? MEDICINES (BASEL, SWITZERLAND) 2018; 5:E102. [PMID: 30201858 PMCID: PMC6163617 DOI: 10.3390/medicines5030102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Three recent studies revealed synergy between immune-checkpoint inhibitors and the microbiome as a new approach in the treatment of cancer. Incidentally, there has been significant progress in understanding the role of polyunsaturated fatty acids (PUFAs) in modulating cancer and the immune system, as well as in regulating the microbiome. Inflammation seems to be the common denominator among these seemingly unrelated biological entities-immune system, the microbiome, and long-chain polyunsaturated fatty acids (LC-PUFAs). This commentary presents a hypothesis proposing the existence of an optimal level of LC-PUFAs that nurtures the suitable gut microbiota preventing dysbiosis. This synergy between optimal LC-PUFAs and gut microbiota helps the immune system overcome the immunosuppressive tumour microenvironment including enhancing the efficacy of immune checkpoint inhibitors. A model on how LC-PUFAs (such as omega(n)-3 and n-6 fatty acids) forms a synergistic triad with the immune system and the microbiome in regulating inflammation to maintain homeostasis is presented. The principles underlying the hypothesis provide a basis in managing and even preventing cancer and other chronic diseases associated with inflammation.
Collapse
|
32
|
de van der Schueren MAE, Laviano A, Blanchard H, Jourdan M, Arends J, Baracos VE. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo(radio)therapy: current evidence and guidance for design of future trials. Ann Oncol 2018; 29:1141-1153. [PMID: 29788170 PMCID: PMC5961292 DOI: 10.1093/annonc/mdy114] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Driven by reduced nutritional intakes and metabolic alterations, malnutrition in cancer patients adversely affects quality of life, treatment tolerance and survival. We examined evidence for oral nutritional interventions during chemo(radio)therapy. Design We carried out a systematic review of randomized controlled trials (RCT) with either dietary counseling (DC), high-energy oral nutritional supplements (ONS) aiming at improving intakes or ONS enriched with protein and n-3 polyunsaturated fatty acids (PUFA) additionally aiming for modulation of cancer-related metabolic alterations. Meta-analyses were carried out on body weight (BW) response to nutritional interventions, with subgroup analyses for DC and/or high-energy ONS or high-protein n-3 PUFA-enriched ONS. Results Eleven studies were identified. Meta-analysis showed overall benefit of interventions on BW during chemo(radio)therapy (+1.31 kg, 95% CI 0.24-2.38, P = 0.02, heterogeneity Q = 21.1, P = 0.007). Subgroup analysis showed no effect of DC and/or high-energy ONS (+0.80 kg, 95% CI -1.14 to 2.74, P = 0.32; Q = 10.5, P = 0.03), possibly due to limited compliance and intakes falling short of intake goals. A significant effect was observed for high-protein n-3 PUFA-enriched intervention compared with isocaloric controls (+1.89 kg, 95% CI 0.51-3.27, P = 0.02; Q = 3.1 P = 0.37). High-protein, n-3 PUFA-enriched ONS studies showed attenuation of lean body mass loss (N = 2 studies) and improvement of some quality of life domains (N = 3 studies). Overall, studies were limited in number, heterogeneous, and inadequately powered to show effects on treatment toxicity or survival. Conclusion This systematic review suggests an overall positive effect of nutritional interventions during chemo(radio)therapy on BW. Subgroup analyses showed effects were driven by high-protein n-3 PUFA-enriched ONS, suggesting the benefit of targeting metabolic alterations. DC and/or high-energy ONS were less effective, likely due to cumulative caloric deficits despite interventions. We highlight the need and provide recommendations for well-designed RCT to determine the effect of nutritional interventions on clinical outcomes, with specific focus on reaching nutritional goals and providing the right nutrients, as part of an integral supportive care approach.
Collapse
Affiliation(s)
- M A E de van der Schueren
- Department of Nutrition and Dietetics, Internal Medicine, VU University Medical Center, Amsterdam; Department of Nutrition and Health, Faculty of Health and Social Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands.
| | - A Laviano
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - H Blanchard
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - M Jourdan
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - J Arends
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V E Baracos
- Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
34
|
Golkhalkhali B, Paliany AS, Chin KF, Rajandram R. The Roles of Adjuvant Supplements in Colorectal Cancer Patients on Chemotherapy - Reaping Benefits from Metabolic Crosstalk. Nutr Cancer 2018; 70:184-191. [PMID: 29324050 DOI: 10.1080/01635581.2018.1412470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of colorectal cancer (CRC) is on a steady rise over the years, with the World Health Organization (WHO) reporting CRC as the fourth leading cause of cancer-related death worldwide. While treatment modalities may differ in accordance to the staging and severity of the disease itself, chemotherapy is almost unavoidable in most cases. Though effective in its mode of action, chemotherapy is commonly associated with undesirable side effects that negatively affects the patient in terms of quality of life, and in some cases may actually interfere with their treatment regimens, thus escalating to poor prognosis. Gastrointestinal disturbances is a major side effect of chemotherapy and in CRC, gastrointestinal disturbances may be further aggravated and grave in nature mainly due to the affected site, being the gastrointestinal tract. The use of complementary therapies as adjuncts to alleviate the side effects of chemotherapy in CRC patients is gaining prominence with dietary supplements being the most commonly employed adjunct. Some of the frequently used dietary supplements for CRC patients are probiotics, omega-3 fatty acid and glutamine. The successful crosstalk between these dietary supplements with important metabolic pathways is crucial in the alleviation of chemotherapy side effects.
Collapse
Affiliation(s)
- Babak Golkhalkhali
- a Department of Surgery , Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Audra Shaleena Paliany
- a Department of Surgery , Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kin Fah Chin
- b Department of Surgery , Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Selangor , Malaysia
| | - Retnagowri Rajandram
- a Department of Surgery , Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
35
|
ω-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122770. [PMID: 29261109 PMCID: PMC5751368 DOI: 10.3390/ijms18122770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy efficacy is strictly limited by the resistance of cancer cells. The ω-3 long chain polyunsaturated fatty acids (ω-3 LCPUFAs) are considered chemosensitizing agents and revertants of multidrug resistance by pleiotropic, but not still well elucidated, mechanisms. Nowadays, it is accepted that alteration in gene expression, modulation of cellular proliferation and differentiation, induction of apoptosis, generation of reactive oxygen species, and lipid peroxidation are involved in ω-3 LCPUFA chemosensitizing effects. A crucial mechanism in the control of cell drug uptake and efflux is related to ω-3 LCPUFA influence on membrane lipid composition. The incorporation of docosahexaenoic acid in the lipid rafts produces significant changes in their physical-chemical properties affecting content and functions of transmembrane proteins, such as growth factors, receptors and ATP-binding cassette transporters. Of note, ω-3 LCPUFAs often alter the lipid compositions more in chemoresistant cells than in chemosensitive cells, suggesting a potential adjuvant role in the treatment of drug resistant cancers.
Collapse
|
36
|
Cereda E, Cappello S, Colombo S, Klersy C, Imarisio I, Turri A, Caraccia M, Borioli V, Monaco T, Benazzo M, Pedrazzoli P, Corbella F, Caccialanza R. Nutritional counseling with or without systematic use of oral nutritional supplements in head and neck cancer patients undergoing radiotherapy. Radiother Oncol 2017; 126:81-88. [PMID: 29111172 DOI: 10.1016/j.radonc.2017.10.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND To evaluate the benefit of oral nutritional supplements (ONS) in addition to nutritional counseling in head and neck cancer (HNC) patients undergoing radiotherapy (RT). METHODS In a single-center, randomized, pragmatic, parallel-group controlled trial (ClinicalTrials.gov: NCT02055833; February 2014-August 2016), 159 newly diagnosed HNC patients suitable for to RT regardless of previous surgery and induction chemotherapy were randomly assigned to nutritional counseling in combination with ONS (N = 78) or without ONS (N = 81) from the start of RT and continuing for up to 3 months after its end. Primary endpoint was the change in body weight at the end of RT. Secondary endpoints included changes in protein-calorie intake, muscle strength, phase angle and quality of life and anti-cancer treatment tolerance. RESULTS In patients with the primary endpoint assessed (modified intention-to-treat population), counseling plus ONS (N = 67) resulted in smaller loss of body weight than nutritional counseling alone (N = 69; mean difference, 1.6 kg [95%CI, 0.5-2.7]; P = 0.006). Imputation of missing outcomes provided consistent findings. In the ONS-supplemented group, higher protein-calorie intake and improvement in quality of life over time were also observed (P < 0.001 for all). The use of ONS reduced the need for changes in scheduled anti-cancer treatments (i.e. for RT and/or systemic treatment dose reduction or complete suspension, HR=0.40 [95%CI, 0.18-0.91], P = 0.029). CONCLUSION In HNC patients undergoing RT or RT plus systemic treatment, and receiving nutritional counseling, the use of ONS resulted in better weight maintenance, increased protein-calorie intake, improved quality of life and was associated with better anti-cancer treatment tolerance.
Collapse
Affiliation(s)
- Emanuele Cereda
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Cappello
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Colombo
- Division of Radiation Oncology, Department of Hemato-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Catherine Klersy
- Biometry and Statistics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Imarisio
- Division of Medical Oncology, Department of Hemato-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annalisa Turri
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marilisa Caraccia
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Borioli
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Monaco
- Division of Medical Oncology, Department of Hemato-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Department of Otolaryngology Head Neck Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Division of Medical Oncology, Department of Hemato-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Franco Corbella
- Division of Radiation Oncology, Department of Hemato-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Caccialanza
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
37
|
Almasud AA, Giles KH, Miklavcic JJ, Martins KJB, Baracos VE, Putman CT, Guan LL, Mazurak VC. Fish oil mitigates myosteatosis and improves chemotherapy efficacy in a preclinical model of colon cancer. PLoS One 2017; 12:e0183576. [PMID: 28832677 PMCID: PMC5568380 DOI: 10.1371/journal.pone.0183576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to assess whether feeding a diet containing fish oil was efficacious in reducing tumor- and subsequent chemotherapy-associated myosteatosis, and improving tumor response to treatment. Methods Female Fischer 344 rats were fed either a control diet for the entire study (control), or switched to a diet containing fish oil (2.0 g /100 g of diet) one week prior to tumor implantation (long term fish oil) or at the start of chemotherapy (adjuvant fish oil). Chemotherapy (irinotecan plus 5-fluorouracil) was initiated 2 weeks after tumor implantation (cycle-1) and 1 week thereafter (cycle-2). Reference animals received no tumor or treatment and only consumed the control diet. All skeletal muscle measures were conducted in the gastrocnemius. To assess myosteatosis, lipids were assessed histologically by Oil Red O staining and total triglyceride content was quantified by gas chromatography. Expression of adipogenic transcription factors were assessed at the mRNA level by real-time RT-PCR. Results Feeding a diet containing fish oil significantly reduced tumor- and subsequent chemotherapy-associated increases in skeletal muscle neutral lipid (p<0.001) and total triglyceride content (p<0.03), and expression of adipogenic transcription factors (p<0.01) compared with control diet fed animals. The adjuvant fish oil diet was as effective as the long term fish oil diet in mitigating chemotherapy-associated skeletal muscle fat content, and in reducing tumor volume during chemotherapy compared with control fed animals (p<0.01). Conclusion Long term and adjuvant fish oil diets are equally efficacious in reducing chemotherapy-associated myosteatosis that may be occurring by reducing expression of transcription factors involved in adipogenesis/lipogenesis, and improving tumor-response to chemotherapy in a neoplastic model.
Collapse
Affiliation(s)
- Alaa A. Almasud
- Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kaitlin H. Giles
- Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - John J. Miklavcic
- Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Karen J. B. Martins
- Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vickie E. Baracos
- Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Charles T. Putman
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation; Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Leluo L. Guan
- Functional Genomics and Microbiology, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Vera C. Mazurak
- Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
38
|
Docosahexaenoic Acid Induces Expression of Heme Oxygenase-1 and NAD(P)H:quinone Oxidoreductase through Activation of Nrf2 in Human Mammary Epithelial Cells. Molecules 2017; 22:molecules22060969. [PMID: 28604588 PMCID: PMC6152628 DOI: 10.3390/molecules22060969] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Docosahexaenoic acid (DHA), an ω-3 fatty acid abundant in fish oils, has diverse health beneficial effects, such as anti-oxidative, anti-inflammatory, neuroprotective, and chemopreventive activities. In this study, we found that DHA induced expression of two representative antioxidant/cytoprotective enzymes, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1), in human mammary epithealial (MCF-10A) cells. DHA-induced upregulation of these enzymes was accompanied by enhanced translocation of the redox-sensitive transcription factor Nrf2 into the nucleus and its binding to antioxidant response element. Nrf2 gene silencing by siRNA abolished the DHA-induced expression of HO-1 and NQO1 proteins. When MCF-10A cells were transfected with mutant constructs in which the cysteine 151 or 288 residue of Keap1 was replaced by serine, DHA-induced expression of HO-1 and NQO1 was markedly reduced. Moreover, DHA activated protein kinase C (PKC)δ and induced Nrf2 phosphorylation. DHA-induced phosphorylation of Nrf2 was abrogated by the pharmacological PKCδ inhibitor rottlerin or siRNA knockdown of its gene expression. The antioxidants N-acetyl-l-cysteine and Trolox attenuated DHA-induced activation of PKCδ, phosphorylation of Nrf2, and and its target protein expression. In conclusion, DHA activates Nrf2, possibly through modification of critical Keap1 cysteine 288 residue and PKCδ-mediated phosphorylation of Nrf2, leading to upregulation of HO-1 and NQO1 expression.
Collapse
|