1
|
Gauvrit T, Benderradji H, Buée L, Blum D, Vieau D. Early-Life Environment Influence on Late-Onset Alzheimer's Disease. Front Cell Dev Biol 2022; 10:834661. [PMID: 35252195 PMCID: PMC8891536 DOI: 10.3389/fcell.2022.834661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
With the expand of the population's average age, the incidence of neurodegenerative disorders has dramatically increased over the last decades. Alzheimer disease (AD) which is the most prevalent neurodegenerative disease is mostly sporadic and primarily characterized by cognitive deficits and neuropathological lesions such as amyloid -β (Aβ) plaques and neurofibrillary tangles composed of hyper- and/or abnormally phosphorylated Tau protein. AD is considered a complex disease that arises from the interaction between environmental and genetic factors, modulated by epigenetic mechanisms. Besides the well-described cognitive decline, AD patients also exhibit metabolic impairments. Metabolic and cognitive perturbations are indeed frequently observed in the Developmental Origin of Health and Diseases (DOHaD) field of research which proposes that environmental perturbations during the perinatal period determine the susceptibility to pathological conditions later in life. In this review, we explored the potential influence of early environmental exposure to risk factors (maternal stress, malnutrition, xenobiotics, chemical factors … ) and the involvement of epigenetic mechanisms on the programming of late-onset AD. Animal models indicate that offspring exposed to early-life stress during gestation and/or lactation increase both AD lesions, lead to defects in synaptic plasticity and finally to cognitive impairments. This long-lasting epigenetic programming could be modulated by factors such as nutriceuticals, epigenetic modifiers or psychosocial behaviour, offering thus future therapeutic opportunity to protect from AD development.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Hamza Benderradji
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Didier Vieau
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
2
|
Gindri dos Santos B, Peres Klein C, Scortegagna Crestani M, Moura Maurmann R, Mateus Hözer R, dos Santos Rodrigues K, Maciel August P, Matté C. Naringin Supplementation during Pregnancy Induces Sex and Region-Specific Alterations in the Offspring's Brain Redox Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094805. [PMID: 33946307 PMCID: PMC8124438 DOI: 10.3390/ijerph18094805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
Research has shown the beneficial effects of naringin supplementation to adult rodents, which can ameliorate oxidative stress in disease models. However, evidence has demonstrated that polyphenol supplementation induced detrimental effects when consumed during sensitive periods of development, such as pregnancy. Therefore, we investigated the effect of maternal naringin supplementation during pregnancy on the offspring’s cerebral redox status. Pregnant Wistar rats were divided into control and naringin groups and supplemented from gestational day 15 to gestational day 21. On postnatal days 1, 7, and 21, offspring were euthanized, and the prefrontal cortex, hippocampus, striatum, and cerebellum dissected. On postnatal day 1, maternal naringin supplementation positively modulated the pups’ brain redox status. On postnatal day 7, a pro-oxidative milieu was observed in the offspring’s striatum and cerebellum in a sex-dependent manner, even though the prefrontal cortex and hippocampus were not negatively affected. Besides, the alterations observed on postnatal day 7 did not persist up to weaning. Our findings demonstrated that the effect induced by naringin supplementation in the brain redox status differed according to the period of development in which naringin was consumed since the beneficial effects usually found in the adult rodents became detrimental when the supplementation was applied during pregnancy.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
- Correspondence:
| | - Caroline Peres Klein
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
| | - Mariana Scortegagna Crestani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (M.S.C.); (R.M.M.)
| | - Rafael Moura Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (M.S.C.); (R.M.M.)
| | - Régis Mateus Hözer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
| | - Karoline dos Santos Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
| | - Pauline Maciel August
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (C.P.K.); (R.M.H.); (K.d.S.R.); (P.M.A.); (C.M.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-000, Brazil; (M.S.C.); (R.M.M.)
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| |
Collapse
|