1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
3
|
Singhapakdi K, Sharma K, Maertens P. Fulminating Autoimmune Demyelination with Optic Neuropathy in a Case of Pediatric Cerebral Adrenoleukodystrophy: Case Report and Review of the Literature. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractX-linked adrenoleukodystrophy (ALD) is a leukodystrophy characterized not only by progressive loss of myelin in the central nervous system due to dysmyelination, but also by acute, subacute, or chronic inflammatory demyelination. This results in the phenotypic variability of cerebral ALD (cerALD), which is independent of the genotype. In this article, we reported a fulminant presentation with fluctuating encephalopathy and visual loss in a patient with childhood onset cerALD. Brain MRI showed symmetric confluent occipito-temporal demyelination with severe disruption of the blood–brain barrier and prechiasmal optic neuropathy. The patient's cerebral spinal fluid (CSF) demonstrated an elevated IgG index, myelin basic proteins, and oligoclonal bands. Within 48 hours of receiving immunomodulating therapy, the patient's symptoms of psychomotor slowing, visual impairment, and areflexia partially resolved. High plasma C26:0 levels and high ratios of C24/22 and C26/22 were diagnostic of ALD. It has been shown that environmental factors play an important role in the inflammatory demyelination responsible for the severe phenotypes of cerALD.
Collapse
Affiliation(s)
- Kanya Singhapakdi
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| | - Kamal Sharma
- Department of Pediatric Critical Care, Pediatric Critical Care Division, University of South Alabama, Mobile, Alabama, United States
| | - Paul Maertens
- Department of Neurology, Child Neurology Division, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
4
|
Abstract
Haematopoietic stem and progenitor cell (HSPC) gene therapy has emerged as an effective treatment modality for monogenic disorders of the blood system such as primary immunodeficiencies and β-thalassaemia. Medicinal products based on autologous HSPCs corrected using lentiviral and gammaretroviral vectors have now been approved for clinical use, and the site-specific genome modification of HSPCs using gene editing techniques such as CRISPR-Cas9 has shown great clinical promise. Preclinical studies have shown engineered HSPCs could also be used to cross-correct non-haematopoietic cells in neurodegenerative metabolic diseases. Here, we review the most recent advances in HSPC gene therapy and discuss emerging strategies for using HSPC gene therapy for a range of diseases.
Collapse
|
5
|
The Landscape of Hematopoietic Stem Cell Transplant and Gene Therapy for X-Linked Adrenoleukodystrophy. Curr Treat Options Neurol 2019; 21:61. [PMID: 31768791 DOI: 10.1007/s11940-019-0605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW To present an updated appraisal of hematopoietic stem cell transplant (HSCT) and gene therapy for X-linked adrenoleukodystrophy (ALD) in the setting of a novel, presymptomatic approach to disease. RECENT FINDINGS Outcomes in HSCT for ALD have been optimized over time due to early patient detection, improved myeloablative conditioning regimens, and adjunctive treatment for patients with advanced cerebral disease. Gene therapy has arrested disease progression in a cohort of boys with childhood cerebral ALD. New therapeutic strategies have provided the clinical basis for the implementation of Newborn Screening (NBS). With the help of advocacy groups, NBS has been implemented, allowing for MRI screening for the onset of cerebral ALD from birth. Gene therapy and optimized hematopoietic stem cell transplant for childhood CALD have changed the natural history of this previously devastating neurological disease.
Collapse
|
6
|
Page KM, Stenger EO, Connelly JA, Shyr D, West T, Wood S, Case L, Kester M, Shim S, Hammond L, Hammond M, Webb C, Biffi A, Bambach B, Fatemi A, Kurtzberg J. Hematopoietic Stem Cell Transplantation to Treat Leukodystrophies: Clinical Practice Guidelines from the Hunter's Hope Leukodystrophy Care Network. Biol Blood Marrow Transplant 2019; 25:e363-e374. [PMID: 31499213 DOI: 10.1016/j.bbmt.2019.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
Abstract
The leukodystrophies are a heterogeneous group of inherited diseases characterized by progressive demyelination of the central nervous system leading to devastating neurologic symptoms and premature death. Hematopoietic stem cell transplantation (HSCT) has been successfully used to treat certain leukodystrophies, including adrenoleukodystrophy, globoid leukodystrophy (Krabbe disease), and metachromatic leukodystrophy, over the past 30 years. To date, these complex patients have primarily been transplanted at a limited number of pediatric centers. As the number of cases identified through pregnancy and newborn screening is increasing, additional centers will be required to treat these children. Hunter's Hope created the Leukodystrophy Care Network in part to create and standardize high-quality clinical practice guidelines to guide the care of affected patients. In this report the clinical guidelines for the care of pediatric patients with leukodystrophies undergoing treatment with HSCT are presented. The initial transplant evaluation, determination of patient eligibility, donor selection, conditioning, supportive care, and post-transplant follow-up are discussed. Throughout these guidelines the need for early detection and treatment and the role of the partnership between families and multidisciplinary providers are emphasized.
Collapse
Affiliation(s)
- Kristin M Page
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina.
| | - Elizabeth O Stenger
- Aflac Cancer & Blood Disorders Center, Children's Hospital of Atlanta/Emory University
| | - James A Connelly
- Monroe Carell Jr. Children's Hospital at Vanderbilt University, Nashville, Tennessee
| | - David Shyr
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine
| | - Tara West
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina
| | - Susan Wood
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina
| | - Laura Case
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina
| | - Maureen Kester
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina
| | - Soo Shim
- Ann & Robert H. Lurie Children's Hospital, Chichago, Illinois
| | - Lauren Hammond
- Leukodystrophy Care Network Steering Committee, Orchard Park, New York
| | - Matthew Hammond
- Leukodystrophy Care Network Steering Committee, Orchard Park, New York
| | - Christin Webb
- Leukodystrophy Care Network Steering Committee, Orchard Park, New York
| | - Alessandra Biffi
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Joanne Kurtzberg
- Pediatric Transplant and Cellular Therapy, Duke University, Durham, North Carolina
| |
Collapse
|
7
|
Lauer A, Da X, Hansen MB, Boulouis G, Ou Y, Cai X, Liberato Celso Pedrotti A, Kalpathy-Cramer J, Caruso P, Hayden DL, Rost N, Mouridsen K, Eichler FS, Rosen B, Musolino PL. ABCD1 dysfunction alters white matter microvascular perfusion. Brain 2017; 140:3139-3152. [PMID: 29136088 PMCID: PMC5841142 DOI: 10.1093/brain/awx262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic resonance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased capillary flow heterogeneity in asymptomatic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow heterogeneity followed by blood–brain barrier permeability changes in the perilesional white matter, which predicts lesion progression. These white matter microvascular alterations normalize within 1 year after treatment with haematopoietic stem cell transplantation. For the first time in vivo, our studies unveil a model to assess how ABCD1 alters white matter microvascular function and explores its potential as an earlier biomarker for monitoring disease progression and response to treatment.
Collapse
Affiliation(s)
- Arne Lauer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neuroradiology, Goethe University, Frankfurt a.M., Germany
| | - Xiao Da
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | - Gregoire Boulouis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neuroradiology, Université Paris-Descartes, INSERM UMR 894, Centre Hospitalier Sainte-Anne, Paris, France
| | - Yangming Ou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Xuezhu Cai
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | | | - Paul Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas L Hayden
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Natalia Rost
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Mouridsen
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia L Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
8
|
Baarine M, Khan M, Singh A, Singh I. Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy. PLoS One 2015; 10:e0143238. [PMID: 26581106 PMCID: PMC4651558 DOI: 10.1371/journal.pone.0143238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/01/2015] [Indexed: 01/12/2023] Open
Abstract
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a "hallmark" of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mushfiquddin Khan
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Musolino PL, Gong Y, Snyder JMT, Jimenez S, Lok J, Lo EH, Moser AB, Grabowski EF, Frosch MP, Eichler FS. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 2015; 138:3206-20. [PMID: 26377633 DOI: 10.1093/brain/awv250] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/03/2015] [Indexed: 01/31/2023] Open
Abstract
See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.
Collapse
Affiliation(s)
- Patricia L Musolino
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Juliet M T Snyder
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandra Jimenez
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Josephine Lok
- 3 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eng H Lo
- 3 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ann B Moser
- 4 Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Eric F Grabowski
- 5 Department of Paediatric Haematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 6 C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian S Eichler
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Miranda CO, Brites P, Mendes Sousa M, Teixeira CA. Advances and pitfalls of cell therapy in metabolic leukodystrophies. Cell Transplant 2012; 22:189-204. [PMID: 23006656 DOI: 10.3727/096368912x656117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leukodystrophies are a group of disorders characterized by myelin dysfunction, either at the level of myelin formation or maintenance, that affect the central nervous system (CNS) and also in some cases, to a lesser extent, the peripheral nervous system (PNS). Although these genetic-based disorders are generally rare, all together they have a significant impact in the society, with an estimated overall incidence of 1 in 7,663 live births. Currently, there is no cure for leukodystrophies, and the development of effective treatments remains challenging. Not only leukodystrophies generally progress very fast, but also most are multifocal needing the simultaneous targeting at multiple sites. Moreover, as the CNS is affected, the blood-brain barrier (BBB) limits the efficacy of treatment. Recently, interest on cell therapy has increased, and the leukodystrophies for which metabolic correction is needed have become first-choice candidates for cell-based clinical trials. In this review, we present and discuss the available cell transplantation therapies in metabolic leukodystrophies including fucosidosis, X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Canavan disease, and Krabbe's disease. We will discuss the latest advances of cell therapy and its pitfalls in this group of disorders, taking into account, among others, the limitations imposed by reduced cell migration in multifocal conditions, the need to achieve corrective enzyme threshold levels, and the growing awareness that not only myelin but also the associated axonopathy needs to be targeted in some leukodystrophies.
Collapse
|
11
|
Haynes CA, De Jesús VR. Improved analysis of C26:0-lysophosphatidylcholine in dried-blood spots via negative ion mode HPLC-ESI-MS/MS for X-linked adrenoleukodystrophy newborn screening. Clin Chim Acta 2012; 413:1217-21. [DOI: 10.1016/j.cca.2012.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
12
|
Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1387-96. [PMID: 22366764 DOI: 10.1016/j.bbadis.2012.02.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, University of Toyama, Toyama, Japan
| | | |
Collapse
|
13
|
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used for three decades as therapy for lysosomal storage diseases. Stable engraftment following transplantation has the potential to provide a source of an enzyme for the life of a patient. Recombinant enzyme is available for disorders that do not have a primary neurologic component. However, for diseases affecting the central nervous system (CNS), intravenous enzyme is ineffective due to its inability to cross the blood-brain barrier. For selected lysosomal disorders, including metachromatic leukodystrophy and globoid cell leukodystrophy, disease phenotype and the extent of disease at the time of transplantation are of fundamental importance in determining outcomes. Adrenoleukodystrophy is an X-linked, peroxisomal disorder, and in approximately 40% of cases a progressive, inflammatory condition develops in the CNS. Early in the course of the disease, allogeneic transplantation can arrest the disease process in cerebral adrenoleukodystrophy, while more advanced patients do poorly. In many of these cases, the utilization of cord blood grafts allows expedient transplantation, which can be critical in achieving optimal outcomes.
Collapse
Affiliation(s)
- Paul J Orchard
- Department of Pediatrics, Division of Hematopoietic Stem Cell Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
14
|
Araya K, Sakai N, Mohri I, Kagitani-Shimono K, Okinaga T, Hashii Y, Ohta H, Nakamichi I, Aozasa K, Taniike M, Ozono K. Localized donor cells in brain of a Hunter disease patient after cord blood stem cell transplantation. Mol Genet Metab 2009; 98:255-63. [PMID: 19556155 DOI: 10.1016/j.ymgme.2009.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
The efficacy of hematopoietic stem cell transplantation (HSCT) for Hunter disease (deficiency of iduronate-2-sulfatase, IDS) remains unclear. We treated a 6-year-old male suffering from a severe type of Hunter disease with cord blood stem cell transplantation (CBSCT); however, he died at 10 months post-therapy due to a laryngeal post-transplantation lymphoproliferative disorder. During the follow-up period after CBSCT, his hyperactivity, estimated mental age, and brain MR findings had not improved. We assessed the efficacy of CBSCT by biochemical and pathological analyses of the autopsied tissues. There were many distended cells with accumulated substrate in the brain, but not in the liver. IDS enzyme activity in the cerebrum remained very low, although that in the liver reached about 40% of the normal control level. However, a variable number of tandem repeats analyses demonstrated a weak donor-derived band not only in the liver but also in the cerebrum. Furthermore, IDS-immunoreactivity in the liver was recognized broadly not only in Kupffer cells but also in hepatocytes. On the other hand, IDS-immunoreactivity was recognized exclusively in CD68-positive microglia/monocytes in the patient's brain; whereas that in the normal brain was also detected in neurons and oligodendrocytes. These donor-derived IDS-positive cells were predominantly localized in perivascular spaces and some of them were evidently present in the brain parenchyma. The efficacy of CBSCT was judged to be insufficient for the brain at 10 months post-therapy. However, the pathological detection of donor-derived cells in the brain parenchyma suggests the potential of HSCT for treatment of neurological symptoms in Hunter disease. This is the first neuropathological report documenting the distribution of donor-derived cells in the brain after CBSCT into a Hunter disease patient.
Collapse
Affiliation(s)
- Ken Araya
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|