1
|
Ferreira S, Pitman KA, Summers BS, Wang S, Young KM, Cullen CL. Oligodendrogenesis increases in hippocampal grey and white matter prior to locomotor or memory impairment in an adult mouse model of tauopathy. Eur J Neurosci 2021; 54:5762-5784. [PMID: 32181929 PMCID: PMC8451881 DOI: 10.1111/ejn.14726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Myelin and axon losses are associated with cognitive decline in healthy ageing but are worse in people diagnosed with tauopathy. To determine whether tauopathy is also associated with enhanced myelin plasticity, we evaluated the behaviour of OPCs in mice that expressed a human pathological variant of microtubule-associated protein tau (MAPTP301S ). By 6 months of age (P180), MAPTP301S mice overexpressed hyperphosphorylated tau and had developed reactive gliosis in the hippocampus but had not developed overt locomotor or memory impairment. By performing cre-lox lineage tracing of adult OPCs, we determined that the number of newborn oligodendrocytes added to the hippocampus, entorhinal cortex and fimbria was equivalent in control and MAPTP301S mice prior to P150. However, between P150 and P180, significantly more new oligodendrocytes were added to these regions in the MAPTP301S mouse brain. This large increase in new oligodendrocyte number was not the result of increased OPC proliferation, nor did it alter oligodendrocyte density in the hippocampus, entorhinal cortex or fimbria, which was equivalent in P180 wild-type and MAPTP301S mice. Furthermore, the proportion of hippocampal and fimbria axons with myelin was unaffected by tauopathy. However, the proportion of myelinated axons that were ensheathed by immature myelin internodes was significantly increased in the hippocampus and fimbria of P180 MAPTP301S mice, when compared with their wild-type littermates. These data suggest that MAPTP301S transgenic mice experience significant oligodendrocyte turnover, with newborn oligodendrocytes compensating for myelin loss early in the development of tauopathy.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kimberley A. Pitman
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Benjamin S. Summers
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Shiwei Wang
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kaylene M. Young
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Carlie L. Cullen
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
2
|
Okada K, Hata Y, Takayanagi Y, Takahashi T, Takayanagi I, Nishida N. An Autopsy Case of Preclinical/Early Clinical Pick Disease. J Neuropathol Exp Neurol 2019; 78:971-974. [PMID: 31504691 DOI: 10.1093/jnen/nlz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here, we report a 74-year-old woman with a long history of schizophrenia but no clinical manifestation of dementia. Cause of death after autopsy was atherosclerotic heart disease. Although neuropathological investigation showed no significant brain atrophy, superficial microvacuolation with neuronal loss was restrictedly detected in the right anterior cingulate gyrus by microscopic examination. Pick bodies (PBs) positive for Bodian and Bielshowsky staining and 3-repeat-tau were detected in frontal and temporal lobes and limbic regions. Prevalence of PBs was most frequent in the right anterior cingulate gyrus and lateral base, followed by other neocortical regions of the frontal lobe, amygdala, and granular layer of the hippocampus. Although the number of glial inclusions was low, ramified astrocytes and various forms of astrocytes with AT8-positive inclusions were also found. Thus, the case may reflect preclinical or very early clinical Pick disease. Distribution of PBs does not necessarily have to be consistent with previously reported preclinical/early clinical Pick disease. These results show that tau pathology in the earlier stage of Pick disease may be heterogeneous, and the anterior cingulate gyrus may be initially affected in Pick disease. Neuropathological examination, including immunohistochemistry without case selection, is useful in identifying clinical and pathological manifestations of Pick disease.
Collapse
Affiliation(s)
- Keitaro Okada
- University of Toyama, Fuculty of Medicine.,Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yukiko Hata
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoichiro Takayanagi
- Department of Psychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Tsutomu Takahashi
- Department of Psychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Isao Takayanagi
- Department of Psychiatry, Arisawabashi Hospital, Toyama, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Abstract
Astrocytes are involved in many diseases of the central nervous system, not only as reactive cells to neuronal damage but also as primary actors in the pathological process. Astrogliopathy is a term used to designate the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Astrocytopathy is utilized to name non-reactive astrogliosis covering hypertrophy, atrophy and astroglial degeneration with loss of function in astrocytes and pathological remodeling, as well as senescent changes. Astrogliopathy and astrocytopathy are hallmarks of tauopathies—neurodegenerative diseases with abnormal hyper-phosphorylated tau aggregates in neurons and glial cells. The involvement of astrocytes covers different disease-specific types such as tufted astrocytes, astrocytic plaques, thorn-shaped astrocytes, granular/fuzzy astrocytes, ramified astrocytes and astrocytes with globular inclusions, as well as others which are unnamed but not uncommon in familial frontotemporal degeneration linked to mutations in the tau gene. Knowledge of molecular differences among tau-containing astrocytes is only beginning, and their distinct functional implications remain rather poorly understood. However, tau-containing astrocytes in certain conditions have deleterious effects on neuronal function and nervous system integrity. Moreover, recent studies have shown that tau-containing astrocytes obtained from human brain tauopathies have a capacity for abnormal tau seeding and spreading in wild type mice. Inclusive conceptions include a complex scenario involving neurons, glial cells and local environmental factors that potentiate each other and promote disease progression in tauopathies.
Collapse
|
4
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 692] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
5
|
Irwin DJ, Brettschneider J, McMillan CT, Cooper F, Olm C, Arnold SE, Van Deerlin VM, Seeley WW, Miller BL, Lee EB, Lee VMY, Grossman M, Trojanowski JQ. Deep clinical and neuropathological phenotyping of Pick disease. Ann Neurol 2015; 79:272-87. [PMID: 26583316 DOI: 10.1002/ana.24559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize sequential patterns of regional neuropathology and clinical symptoms in a well-characterized cohort of 21 patients with autopsy-confirmed Pick disease. METHODS Detailed neuropathological examination using 70μm and traditional 6μm sections was performed using thioflavin-S staining and immunohistochemistry for phosphorylated tau, 3R and 4R tau isoforms, ubiquitin, and C-terminally truncated tau. Patterns of regional tau deposition were correlated with clinical data. In a subset of cases (n = 5), converging evidence was obtained using antemortem neuroimaging measures of gray and white matter integrity. RESULTS Four sequential patterns of pathological tau deposition were identified starting in frontotemporal limbic/paralimbic and neocortical regions (phase I). Sequential involvement was seen in subcortical structures, including basal ganglia, locus coeruleus, and raphe nuclei (phase II), followed by primary motor cortex and precerebellar nuclei (phase III) and finally visual cortex in the most severe (phase IV) cases. Behavioral variant frontotemporal dementia was the predominant clinical phenotype (18 of 21), but all patients eventually developed a social comportment disorder. Pathological tau phases reflected the evolution of clinical symptoms and degeneration on serial antemortem neuroimaging, directly correlated with disease duration and inversely correlated with brain weight at autopsy. The majority of neuronal and glial tau inclusions were 3R tau-positive and 4R tau-negative in sporadic cases. There was a relative abundance of mature tau pathology markers in frontotemporal limbic/paralimbic regions compared to neocortical regions. INTERPRETATION Pick disease tau neuropathology may originate in limbic/paralimbic cortices. The patterns of tau pathology observed here provide novel insights into the natural history and biology of tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- David J Irwin
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Corey T McMillan
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Felicia Cooper
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher Olm
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Steven E Arnold
- Brain-Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Miki Y, Mori F, Tanji K, Kurotaki H, Kakita A, Takahashi H, Wakabayashi K. An autopsy case of incipient Pick's disease: immunohistochemical profile of early-stage Pick body formation. Neuropathology 2014; 34:386-91. [PMID: 24444359 DOI: 10.1111/neup.12104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
Abstract
There is little immunohistochemical information about the early stage of Pick body formation, due to the extremely limited opportunities of studying Pick's disease at the incipient or subclinical stage. We report a 62-year-old man without any clinical manifestations of Pick's disease, who died of B-cell lymphoma of the brainstem. Post mortem examination revealed many Pick bodies without obvious neuronal loss mainly in the left frontal and temporal lobes. Three brains of patients with typical Pick's disease (disease duration: 7, 11 and 16 years) were also examined. Pick bodies were immunopositive for phosphorylated tau and 3-repeat tau, and less consistently for p62 in both incipient and typical cases. In the incipient case, borderline positivity for ubiquitin was evident in only a few Pick bodies, whereas in the typical cases many Pick bodies showed obvious positivity for ubiquitin. These findings suggest that Pick bodies are rarely ubiquitinated in the early stage of Pick body formation.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|