1
|
Peng H, Yu Y, Wang P, Yao Y, Wu X, Zheng Q, Wang J, Tian B, Wang Y, Ke T, Liu M, Tu X, Liu H, Wang QK, Xu C. NINJ2 deficiency inhibits preadipocyte differentiation and promotes insulin resistance through regulating insulin signaling. Obesity (Silver Spring) 2023; 31:123-138. [PMID: 36504350 DOI: 10.1002/oby.23580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Genetic variants in ninjurin-2 (NINJ2; nerve injury-induced protein 2) confer risk of ischemic strokes and coronary artery disease as well as endothelial activation and inflammation. However, little is known about NINJ2's in vivo functions and underlying mechanisms. METHODS The phenotypes of NINJ2 knockout mice were analyzed, and mechanisms of NINJ2 that regulate body weight, insulin resistance, and glucose homeostasis and lipogenesis were investigated in vivo and in vitro. RESULTS This study found that mice lacking NINJ2 showed impaired adipogenesis, increased insulin resistance, and abnormal glucose homeostasis, all of which are risk factors for strokes and coronary artery disease. Mechanistically, NINJ2 directly interacts with insulin receptor/insulin-like growth factor 1 receptor (INSR/IGF1R), and NINJ2 knockdown can block insulin-induced mitotic clonal expansion during preadipocyte differentiation by inhibiting protein kinase B/extracellular signal-regulated kinase (AKT/ERK) signaling and by decreasing the expression of key adipocyte transcriptional regulators CCAAT/enhancer-binding protein β (C/EBP-β), C/EBP-α, and peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, the interaction between NINJ2 and INSR/IGF1R is needed for maintaining insulin sensitivity in adipocytes and muscle via AKT and glucose transporter type 4. Notably, adenovirus-mediated NINJ2 overexpression can ameliorate diet-induced insulin resistance in mice. CONCLUSIONS In conclusion, these findings reveal NINJ2 as an important new facilitator of insulin receptors, and the authors propose a unique regulatory mechanism between insulin signaling, adipogenesis, and insulin resistance.
Collapse
Affiliation(s)
- Huixin Peng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yubing Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pengyun Wang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinna Wu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Zheng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beijia Tian
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yifan Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mugen Liu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Tu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huiying Liu
- Department of Respiratory and Critical Care Medicine, Southern of the Fifth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Yan S, Wu S, Wu J, Zhang Q, He Y, Jiang C, Jin T. Genetic polymorphisms of MRPS30-DT and NINJ2 may influence lung cancer risk. Open Med (Wars) 2023; 18:20230655. [PMID: 36910850 PMCID: PMC9999113 DOI: 10.1515/med-2023-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the malignant tumors, and genetic background is a risk factor in lung cancer that cannot be neglected. In this study, we aimed to find out the effect of MRPS30-DT and NINJ2 variants on lung cancer risk. In this study, the seven selected single-nucleotide polymorphisms (SNPs) of MRPS30-DT and NINJ2 were genotyped in 509 lung cancer patients and 501 healthy controls based on the Agena MassARRAY platform. Odds ratios and 95% confidence intervals were calculated by logistic regression analysis to evaluate association between gene polymorphisms and lung cancer risk. False-positive report probability was also used to assess false-positive results. Furthermore, the interaction between SNPs was analyzed by multifactor dimensionality reduction to predict lung cancer risk. We identified the genotype TA of rs16901963 (T < A) in MRPS30-DT as a protective factor against lung cancer, while rs16901963-TT was significantly associated with an increased risk of lung cancer. We also revealed that the effect of MRPS30-DT and NINJ2 variants on the risk of lung cancer was dependent on age, gender, smoking, and drinking status. In conclusion, this study first proved that MRPS30-DT and NINJ2 variants played important roles in affecting the susceptibility to lung cancer.
Collapse
Affiliation(s)
- Shouchun Yan
- Department of Emergency Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang712000, Shaanxi Province, China
| | - Shouzhen Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang712000, Shaanxi Province, China
| | - Jia Wu
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang712046, Shaanxi Province, China
| | - Qinlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an710061, Shaanxi Province, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang712082, Shaanxi Province, China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an710038, Shaanxi Province, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6, Wenhui East Road, Xianyang712082, Shaanxi Province, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an710069, Shaanxi Province, China
| |
Collapse
|
3
|
Sorosina M, Peroni S, Mascia E, Santoro S, Osiceanu AM, Ferrè L, Clarelli F, Giordano A, Cannizzaro M, Martinelli Boneschi F, Filippi M, Esposito F. Involvement of NINJ2 Protein in Inflammation and Blood-Brain Barrier Transmigration of Monocytes in Multiple Sclerosis. Genes (Basel) 2022; 13:1946. [PMID: 36360183 PMCID: PMC9690398 DOI: 10.3390/genes13111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder of the central nervous system (CNS). The migration of immune cells into the CNS is essential for its development, and plasma membrane molecules play an important role in triggering and maintaining the inflammation. We previously identified ninjurin2, a plasma membrane protein encoded by NINJ2 gene, as involved in the occurrence of relapse under Interferon-β treatment in MS patients. The aim of the present study was to investigate the involvement of NINJ2 in inflammatory conditions and in the migration of monocytes through the blood-brain barrier (BBB). We observed that NINJ2 is downregulated in monocytes and in THP-1 cells after stimulation with the pro-inflammatory cytokine LPS, while in hCMEC/D3 cells, which represent a surrogate of the BBB, LPS stimulation increases its expression. We set up a transmigration assay using an hCMEC/D3 transwell-based model, finding a higher transmigration rate of monocytes from MS subjects compared to healthy controls (HCs) in the case of an activated hCMEC/D3 monolayer. Moreover, a positive correlation between NINJ2 expression in monocytes and monocyte migration rate was observed. Overall, our results suggest that ninjurin2 could be involved in the transmigration of immune cells into the CNS in pro-inflammatory conditions. Further experiments are needed to elucidate the exact molecular mechanisms.
Collapse
Affiliation(s)
- Melissa Sorosina
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Peroni
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Santoro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ana Maria Osiceanu
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Ferrè
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonino Giordano
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Filippo Martinelli Boneschi
- Neurology Unit, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Esposito
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
4
|
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, Zhang R, Xia Y, Wang QK, Xu C. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY) 2021; 13:25393-25407. [PMID: 34897030 PMCID: PMC8714150 DOI: 10.18632/aging.203755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown. Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms. Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huixin Peng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingjing Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Qian Zheng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Pengxia Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongfu Zhang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qing K Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
5
|
Assessment of Association between NINJ2 Polymorphisms and Suicide Attempts in an Iranian Population. J Mol Neurosci 2020; 70:1880-1886. [PMID: 32436199 DOI: 10.1007/s12031-020-01584-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
Suicidal behavior as a psychological problem with high public health burden is associated with a number of genetically determined risk factors. In the current study, we investigated the association between two polymorphisms within the NINJ2 gene and risk of suicide in an Iranian population. The study included 295 individuals who attempted suicide with soft suicide methods, 234 suicide victims and 410 normal controls. The rs11833579 SNP was associated with death from suicide in a codominant model in that the AG genotype decreased the risk of death from suicide compared with the GG genotype (OR (95% CI) = 0.49 (0.34-0.71), adjusted P value = 4e-04). This SNP was also associated with death from suicide in dominant (AG + AA versus GG: OR (95% CI) = 0.63 (0.46-0.87), adjusted P value = 0.011) and overdominant (AG versus GG + AA: OR (95% CI) = 0.49 (0.35-0.69), adjusted P value < 0.0001) models. In addition, this SNP was associated with soft suicide attempts in a codominant model (AG versus AA + GG: OR (95% CI) = 0.7 (0.5-0.98), adjusted P value = 0.02). The rs3806263 SNP was associated with death from suicide in allelic (A versus G: OR (95% CI) = 1.48 (1.17-1.88), adjusted P value = 0.002), codominant (AA versus GG: OR (95% CI) = 3.14 (1.89-5.21), adjusted P value < 0.0001), recessive (AA versus GG + AG: OR (95% CI) = 3.47 (2.15-5.61), adjusted P value < 0.0001), overdominant (AG versus AA + GG: OR (95% CI) = 0.62 (0.45-0.87), adjusted P value = 0.0092) and log-additive models (OR (95% CI) = 1.45 (1.15-1.83), adjusted P value = 0.0034). When comparing allele/genotype frequencies of this SNP between suicide victims and soft suicide attempters, significant associations were found in allelic, codominant, recessive and log-additive models. The AG haplotype (rs11833579 and rs3806263, respectively) was significantly less prevalent among suicide victims compared with controls (OR (95% CI) = 0.37 (0.26-0.52), adjusted P value < 0.0001). This haplotype was also less prevalent among suicide victims vs. soft suicide attempters (OR (95% CI) = 0.43 (0.31-0.61), adjusted P value < 0.0001). The GA haplotype (rs11833579 and rs3806263, respectively) was less frequent among suicide victims compared with controls (OR (95% CI) = 0.63 (0.45-0.89), adjusted P value = 0.0156). Finally, the AA haplotype was more prevalent among suicide victims compared with both controls (OR (95% CI) = 2.37 (1.56-3.6), adjusted P value = 0.0002) and soft suicide attempters (OR (95% CI) = 1.92 (1.32-2.78), adjusted P value = 0.0012). Thus, these two SNPs might be regarded as genetic determinants of suicide risk in Iranian populations. Further studies in different populations are needed to verify these results.
Collapse
|
6
|
Peroni S, Sorosina M, Malhotra S, Clarelli F, Osiceanu AM, Ferrè L, Roostaei T, Rio J, Midaglia L, Villar LM, Álvarez-Cermeño JC, Guaschino C, Radaelli M, Citterio L, Lechner-Scott J, Spataro N, Navarro A, Martinelli V, Montalban X, Weiner HL, de Jager P, Comi G, Esposito F, Comabella M, Martinelli-Boneschi F. A pharmacogenetic study implicates NINJ2 in the response to Interferon-β in multiple sclerosis. Mult Scler 2019; 26:1074-1082. [PMID: 31221001 DOI: 10.1177/1352458519851428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a disease in which biomarker identification is fundamental to predict response to treatments and to deliver the optimal drug to patients. We previously found an association between rs7298096, a polymorphism upstream to the NINJ2 gene, and the 4-year response to interferon-β (IFNβ) treatment in MS patients. OBJECTIVES To analyse the association between rs7298096 and time to first relapse (TTFR) during IFNβ therapy in MS patients and to better investigate its functional role. METHODS Survival analysis was applied in three MS cohorts from different countries (n = 1004). We also studied the role of the polymorphism on gene expression using GTEx portal and a luciferase assay. We interrogated GEO datasets to explore the relationship between NINJ2 expression, IFNβ and TTFR. RESULTS Rs7298096AA patients show a shorter TTFR than rs7298096G-carriers (Pmeta-analysis = 3 × 10-4, hazard ratio = 1.41). Moreover, rs7298096AA is associated with a higher NINJ2 expression in blood (p = 7.0 × 10-6), which was confirmed in vitro (p = 0.009). Finally, NINJ2 expression is downregulated by IFNβ treatment and related to TTFR. CONCLUSIONS Rs7298096 could influence MS disease activity during IFNβ treatment by modulating NINJ2 expression in blood. The gene encodes for an adhesion molecule involved in inflammation and endothelial cells activation, supporting its role in MS.
Collapse
Affiliation(s)
- Silvia Peroni
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ana Maria Osiceanu
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy/Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Tina Roostaei
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jordi Rio
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luisa María Villar
- Departments of Neurology and Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain
| | - José Carlos Álvarez-Cermeño
- Departments of Neurology and Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain
| | - Clara Guaschino
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Radaelli
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, Division of Genetics and Cellular Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeannette Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia/Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Nino Spataro
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain/Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arcadi Navarro
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain/Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain/National Institute for Bioinformatics (INB), Barcelona, Spain/Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Vittorio Martinelli
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain/St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Howard L Weiner
- Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip de Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA/Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Giancarlo Comi
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Biomedical Sciences for Health, University of Milan, Milan, Italy/Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
7
|
Liu H, Feng Y, Xu M, Yang J, Wang Z, Di G. Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide. Cell Commun Signal 2018; 16:81. [PMID: 30442144 PMCID: PMC6238317 DOI: 10.1186/s12964-018-0294-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Background Four-octyl itaconate (OI), the itaconate’s cell-permeable derivative, can activate Nrf2 signaling via alkylation of Keap1 at its cysteine residues. The current study tested the potential neuroprotective function of OI in hydrogen peroxide (H2O2)-treated neuronal cells. Methods SH-SY5Y neuronal cells and epigenetically de-repressed (by TSA treatment) primary murine neurons were treated with OI and/or H2O2. Nrf2 pathway genes were examined by Western blotting assay and real-time quantitative PCR analysis. Neuronal cell death was tested by the LDH and trypan blue staining assays. Apoptosis was tested by TUNEL and Annexin V assays. Results In SH-SY5Y neuronal cells and primary murine neurons, OI activated Nrf2 signaling, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation, as well as expression of Nrf2-regulated genes (HO1, NQO1 and GCLC) and ninjurin2 (Ninj2). Functional studies showed that OI attenuated H2O2-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage as well as neuronal cell death and apoptosis. shRNA-mediated knockdown, or CRISPR/Cas9-induced knockout of Nrf2 almost abolished OI-induced neuroprotection against H2O2. Keap1 is the primary target of OI. Keap1 knockout by CRISPR/Cas9 method mimicked and abolished OI-induced actions in SH-SY5Y cells. Introduction of a Cys151S mutant Keap1 in SH-SY5Y cells reversed OI-induced Nrf2 activation and anti-H2O2 neuroprotection. Conclusions OI activates Keap1-Nrf2 signaling to protect SH-SY5Y cells and epigenetically de-repressed primary neurons from H2O2 in vitro. Electronic supplementary material The online version of this article (10.1186/s12964-018-0294-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Liu
- Department of Neurosurgery, The First People's Hospital of Kunshan, Jiangsu University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital, Suzhou, China
| | - Jian Yang
- Department of Neurosurgery, The First People's Hospital of Kunshan, Jiangsu University, Suzhou, China
| | - Zhichun Wang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| |
Collapse
|
8
|
Ma Q, Wang L, Yao H, Wang TT, Ma Y, Su YX, Wang ZQ, Zhu J, Wang SX, Zhang ZX, Hou QQ, Cai R, Gong XL, Jiang XY. Association Between KCNQ1 Genetic Variants and Type 2 Diabetes in the Uyghur Population. Genet Test Mol Biomarkers 2015; 19:698-702. [PMID: 26540651 DOI: 10.1089/gtmb.2015.0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the association between KCNQ1 gene polymorphisms and type 2 diabetes (T2D) in an admixed ethnic minority, Uyghur population, living in the Northwest region of China. MATERIALS AND METHODS We genotyped three tagging single-nucleotide polymorphisms rs2283171, rs11023485, and rs2283208 of the KCNQ1 gene in 1006 T2D participants and 1004 controls and conducted association analysis. RESULTS The frequencies of the AG and GG genotypes and the G allele of rs2283171 were higher in the control group (51.4%, 22%, and 47.7%, respectively) than in the case group (49%, 17.6%, and 42.1%, respectively). The minor G allele decreased the risk of T2D with a per-allele odds ratio of 0.79 (95% CI: 0.70-0.90) for the additive genetic model in univariate analysis (p = 0.0001). After adjustment for the covariates of age, gender, smoking, alcohol use, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), triglyceride (TG), and total cholesterol (TC), the diabetic protective effect of the rs2283171-G allele remained. No difference was observed in the frequency distributions of the rs11023485 and rs2283208 genotypes between the two groups. CONCLUSION We identified a novel association between rs2283171 of KCNQ1 and T2D in the Uyghur population. Further association and functional studies are required to identify the causal functional variant that is in linkage disequilibrium with this polymorphism.
Collapse
Affiliation(s)
- Qi Ma
- 1 Key Laboratory of Xinjiang Metabolic Disease, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Li Wang
- 1 Key Laboratory of Xinjiang Metabolic Disease, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Hua Yao
- 1 Key Laboratory of Xinjiang Metabolic Disease, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Ting-ting Wang
- 2 Department of Occupational and Environmental Health, Xinjiang Medical University , Urumqi, China
| | - Yan Ma
- 2 Department of Occupational and Environmental Health, Xinjiang Medical University , Urumqi, China
| | - Yin-xia Su
- 2 Department of Occupational and Environmental Health, Xinjiang Medical University , Urumqi, China
| | - Zhi-qiang Wang
- 2 Department of Occupational and Environmental Health, Xinjiang Medical University , Urumqi, China
| | - Jun Zhu
- 3 Department of Endocrinology, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Shu-xia Wang
- 4 Department of Cadre Healthcare, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Zhao-Xia Zhang
- 5 Department of Laboratory Medicine, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Qin-qin Hou
- 6 Specimen Bank of Xinjiang Key Diseases, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Ren Cai
- 6 Specimen Bank of Xinjiang Key Diseases, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Xue-li Gong
- 7 Department of Pathophysiology, Xinjiang Medical University , Urumqi, China
| | - Xiao-yan Jiang
- 8 Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
9
|
Titov BV, Matveeva NA, Martynov MY, Favorova OO. Ischemic stroke as a complex polygenic disease. Mol Biol 2015. [DOI: 10.1134/s0026893315020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Zhang XG, Zhang H, Lin L, Yang YQ, Deng TT, Liu Q, Liang XL, Wang MQ, Peng DZ. Genes underlying positive influence of prenatal environmental enrichment and negative influence of prenatal earthquake simulation and corrective influence of Chinese herbal medicine on rat offspring: Irf7 and Ninj2. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:367-76. [PMID: 25435624 DOI: 10.4314/ajtcam.v11i2.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prenatal environmental enrichment (EE) has been proven to positively affect but prenatal stress negatively influence the physiological and psychological processes in animals, whose trans-generational genetic mechanism remains unclearly defined. We aimed to investigate and find out key genes underlying the positive-negative effects derived from prenatal interventions. MATERIALS AND METHODS Pregnant rats were randomized into EE group (EEG), earthquake simulation group (ESG), herbal group (HG) received herbal supplements in feed after earthquake simulation, and control group (CG). RESULTS Light Box Defecation Test (LBDT) showed EEG offspring presented less fecal pellets than CG offspring, ESG's more than CG's, and HG's less than ESG (p's<0.05). Open-field Test (OFT) score of EEG was higher than CG offspring, of ESG's was lower than CG's, and HG's higher than ESG's. Irf7 and Ninj were screened, which were up-regulated in EEG, down-regulated in ESG (FC<0.5), and were neutralized in HG. Prenatal EE could positively promote the nervous system development, prenatal earthquake simulation could retard the nervous system development and Chinese herbal remedy (JKSQW) which could correct the retardation. CONCLUSION The negative-positive prenatal effect could contribute to altered gene expression of Irf7 and Ninj2 which also could play a key role in the improving function of JKSQW for the kidneys.
Collapse
Affiliation(s)
- Xian Geng Zhang
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Hui Zhang
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Lin Lin
- The School of Nursing, Chengdu Medical University, Chengdu, 610083, China
| | - Yi Qing Yang
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Ting Ting Deng
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Qin Liu
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Xiao Li Liang
- The School of Nursing, Chengdu University of T.C.M., Chengdu, 610075, China
| | - Mi Qu Wang
- Molecular Laboratory of T.C.M., Chengdu University of T.C.M., Chengdu, 610075, China
| | - De Zhong Peng
- The School of Acupuncture and Moxibustion, Chengdu University of T.C.M., Chengdu, 610075, China
| |
Collapse
|
11
|
Abstract
Understanding the genetic architecture of cerebrovascular disease holds promise of novel stroke prevention strategies and therapeutics that are both safe and effective. Apart from a few single-gene disorders associated with cerebral ischemia or intracerebral hemorrhage, stroke is a complex genetic phenotype that requires careful ascertainment and robust association testing for discovery and validation analyses. The recently uncovered shared genetic contribution between clinically manifest stroke syndromes and closely related intermediate cerebrovascular phenotypes offers effective and efficient approaches to complex trait analysis.
Collapse
Affiliation(s)
- Natalia S Rost
- Department of Neurology, JP Kistler Stroke Research Center, Massachusetts General Hospital, 175 Cambridge Street, Suite 300, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Sharif J, Shinkai Y, Koseki H. Is there a role for endogenous retroviruses to mediate long-term adaptive phenotypic response upon environmental inputs? Philos Trans R Soc Lond B Biol Sci 2013; 368:20110340. [PMID: 23166400 DOI: 10.1098/rstb.2011.0340] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endogenous retroviruses (ERVs) are long terminal repeat-containing virus-like elements that have colonized approximately 10 per cent of the present day mammalian genomes. The intracisternal A particles (IAPs) are a class of ERVs that is currently highly active in the rodents. IAP elements can influence the transcription profile of nearby genes by providing functional promoter elements and modulating local epigenetic landscape through changes in DNA methylation and histone (H3K9) modifications. Despite the potential role for IAPs in gene regulation, the precise genomic locations where these elements are integrated are not well understood. To address this issue, we have identified more than 400 novel IAP insertion sites within/near annotated genes by searching the murine genome, which suggests that the impact of IAP elements on local and/or global gene regulation could be more profound than was previously expected. On the basis of our independent analyses and already published reports, here we argue that IAPs and ERV elements in general could have an evolutionary role for modulating phenotypic plasticity upon environmental inputs, and that this could be mediated through specific stages of embryonic development such as placentation during which the epigenetic constraints on IAP elements are partially relaxed.
Collapse
Affiliation(s)
- Jafar Sharif
- Developmental Genetics Group, RIKEN Research Center for Allergy & Immunology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Kanagawa, Japan.
| | | | | |
Collapse
|
13
|
Lack of association between two key SNPs on chromosome 12p13 and ischemic stroke in Chinese Uyghur population. J Neurol Sci 2012; 323:52-5. [PMID: 22938733 DOI: 10.1016/j.jns.2012.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified two key SNPs (rs11833579 and rs12425791) on chromosome 12p13 that were significantly associated with stroke in Caucasians. However, the validity of the association has remained controversial. We performed genetic association analyses in a very unique population which has 60% European ancestry and 40% East Asian ancestry. No significant association between these two SNPs and ischemic stroke was detected in this Chinese Uyghur population.
Collapse
|
14
|
Association between 12p13 SNPs rs11833579/rs12425791 near NINJ2 gene and ischemic stroke in East Asian population: evidence from a meta-analysis. J Neurol Sci 2012; 316:116-21. [PMID: 22297388 DOI: 10.1016/j.jns.2012.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Meta-analysis in European population found no association between rs12425791/rs11833579 and ischemic stroke. Several studies focused on East Asians have evaluated the association between this two SNPs and risk of ischemic stroke, but the results have been inconsistent. The aim of this study was to perform a meta-analysis to investigate a more authentic association between rs12425791 and rs11833579 G>A mutation and ischemic stroke in East Asian population, as well as in Chinese Han population. METHODS Systematic searches of electronic databases Embase, PubMed, Web of Science, and CBM as well as hand searching of the references of identified articles and the meeting abstracts were performed. Study selection, data abstraction and study quality evaluation were independently conducted in duplicate. Statistical analyses were performed using software Stata 11.0. The pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were performed. Different effects models were used according to the difference in heterogeneity. Publication bias was tested by Begg's funnel plot and Egger's regression test. RESULTS A total of 4 publications including 7 studies were involved. For rs12425791, significant association was found in allelic model (OR=1.06, 95%CI=1.00-1.11) and dominant model (OR=1.10, 95%CI=1.03-1.18), whereas no evidence of association was found for additive model (OR=1.04, 95%CI=0.93-1.17) and for recessive model (OR=0.99, 95%CI=0.88-1.10). For rs11833579, no evidence of association was found for all genetic models. In the analysis of Chinese Han population, there is lack of evidence for association of ischemic stroke for both SNPs. CONCLUSIONS In summary, our meta-analysis suggests that rs12425791 is significantly associated with ischemic stroke in East Asian population but not Chinese Han population, of which A alleles increase the risk of ischemic stroke, whereas no evidence of association was found for rs11833579 in East Asian population as well as Chinese Han population.
Collapse
|