1
|
Wang R, Zhang G, Zhu X, Xu Y, Cao N, Li Z, Han C, Qin M, Shen Y, Dong J, Ma F, Zhao A. Prognostic Implications of LRP1B and Its Relationship with the Tumor-Infiltrating Immune Cells in Gastric Cancer. Cancers (Basel) 2023; 15:5759. [PMID: 38136305 PMCID: PMC10741692 DOI: 10.3390/cancers15245759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Han
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| |
Collapse
|
2
|
Kolb S, Hoffmann I, Monjé N, Dragomir MP, Jank P, Bischoff P, Keunecke C, Pohl J, Kunze CA, Marchenko S, Schmitt WD, Kulbe H, Sers C, Sehouli J, Braicu EI, Denkert C, Darb-Esfahani S, Horst D, Sinn BV, Taube ET. LRP1B-a prognostic marker in tubo-ovarian high-grade serous carcinoma. Hum Pathol 2023; 141:158-168. [PMID: 37742945 DOI: 10.1016/j.humpath.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.
Collapse
Affiliation(s)
- Svenja Kolb
- Department of Gynecology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Neukölln, 12351, Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Carlotta Keunecke
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jonathan Pohl
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Sofya Marchenko
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Wolfgang D Schmitt
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Silvia Darb-Esfahani
- MVZ Pathologie Spandau, 13589 Berlin, Spandau, Germany; MVZ Pathologie Berlin-Buch, 13125 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Bruno V Sinn
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Eliane T Taube
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Zhang R, Wei B, Hu Y, Lv W, Adilai A, Yang F, Zhang J, Cheng G. Whole-Exome Sequencing Revealed the Mutational Profiles of Primary Central Nervous System Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:291-302. [PMID: 36725383 DOI: 10.1016/j.clml.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is a highly aggressive type of extranodal non-Hodgkin lymphoma, of which approximately 90% of the cases are diffuse large B-cell lymphoma (DLBCL). In recent years, the incidence of PCNSL has significantly increased in women and older men. Although advanced treatments such as high-dose methotrexate (HD-MTX) and targeted agents have been introduced, the prognosis of these patients remains poorer than those with other forms of non-Hodgkin's lymphoma. METHODS Twelve cases of Chinese PCNSL were analyzed to detect their genetic alterations using whole-exome sequencing (WES). We identified 448 potential somatic single nucleotide variants (SNVs) with a median of 12 SNVs per PCNSL sample and 35 small indels with potentially protein-changing features in 9 PCNSL samples. RESULTS We found that myeloid differentiation factor 88 (MYD88) had the highest mutation frequency, which affected the activity of the nuclear factor-κB (NF-κB) pathway. PCNSL samples with low-density lipoprotein receptor-related protein 1B (LRP1B) mutations had a higher mutation rate than samples with wild-type LRP1B. Polycystic kidney and hepatic disease 1 (PKHD1), the causal gene of autosomal recessive polycystic kidney disease (ARPKD), was identified in 2 PCNSL cases and exhibited missense mutations. Pathway analysis revealed enrichment in pathways associated with central carbon metabolism in cancer, renal cell carcinoma, nicotine addiction, bladder cancer, and long-term depression. CONCLUSIONS WES revealed significantly mutated genes associated with the molecular mechanisms of PCNSL, which could serve as therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyuan Wei
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yiyang Hu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Wenying Lv
- Department of Neurosurgery, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing,China
| | - Abudurexiti Adilai
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Gang Cheng
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Mugge L, Dang DD, Stabingas K, Keating G, Rossi C, Keating R. MN1 altered astroblastoma with APC and LRP1B gene mutations: a unique variant in the cervical spine of a pediatric patient. Childs Nerv Syst 2023; 39:1309-1315. [PMID: 36648513 DOI: 10.1007/s00381-022-05795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Astroblastomas (AB) are high-grade neoplasms which typically occur within the cerebral hemisphere. However, given the rarity of this neoplasm and the number of variants, the relevance of this molecular makeup is unknown. We sought to describe the clinical presentation, treatment, and pathological analysis of a novel MN1 (meningioma 1) cervical spinal cord astroblastoma variant presenting in a pediatric patient. METHODS A retrospective review of electronic medical records was performed with an emphasis on neuroimaging, perioperative course, and pathological analysis. RESULTS An 11-month-old male with no significant history presented with two weeks of neck stiffness and cervicalgia. Neurologically, the patient was intact without signs of infection or trauma. Cervical CT was unremarkable. A subsequent MRI demonstrated a heterogeneously enhancing intramedullary lesion extending from the craniocervical junction to T4. The patient was treated with perioperative steroids and underwent C1-C3 laminectomies and C4-T4 laminotomies for tumor resection. Upon completion of the durotomy, an exophytic gray-red tumor was appreciated within the epidural space and gross total resection was achieved (no change on intraoperative neurophysiological monitoring) and confirmed on post-operative imaging. Immunohistochemical analysis was consistent with an astroblastoma with atypical diffuse positivity of CD56, CD99, and nuclear OLIG2. Molecular analysis revealed not only MN1 alterations but also changes in genes encoding APC and LRP1B. Both alterations were not previously documented to be associated with an astroblastoma. CONCLUSION Our case represents the first report of an infant with an MN1 astroblastoma with APC and LRP1B gene alterations in the cervical spine. Gross total resection paired with a detailed histopathologic analysis is vital for optimizing adjuvant treatment.
Collapse
Affiliation(s)
- Luke Mugge
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA. .,Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Danielle D Dang
- Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Kristen Stabingas
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| | - Gregory Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Christopher Rossi
- Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Robert Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
6
|
Bu F, Zhao Y, Zhao Y, Yang X, Sun L, Chen Y, Zhu S, Min L. Distinct tumor microenvironment landscapes of rectal cancer for prognosis and prediction of immunotherapy response. Cell Oncol 2022; 45:1363-1381. [PMID: 36251240 DOI: 10.1007/s13402-022-00725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Tumor microenvironment (TME) affects the progression of rectal cancer (RC), and the clinical relevance of its immune elements was widely reported. Here we aim to delineate the complete TME landscape, including non-immune features, to improve our understanding of RC heterogeneity and provide a better strategy for precision medicine. METHODS Single-cell analysis of GSE161277 using Seurat and Cellcall was performed to identify cell-cell interactions. The ssGSEA was employed to quantify the TME elements in TCGA patients, which were further clustered into subtypes by hclust. WGCNA and LASSO were combined to construct a degenerated signature for prognosis, and its performance was validated in two GEO datasets. RESULTS We proposed a subtyping strategy based on the abundance of both immune and non-immune components, which divided all RC patients into 4 subtypes (Immune-, Canonical-, Dormant- and Stem-like). Different subtypes exhibited distinct mutation landscapes, biological features, immune characteristics, immunotherapy responses and prognoses. Next, WGCNA and LASSO regression were combined to construct a 10-gene signature based on differentially expressed genes among different subtypes. Subgroups divided by this signature also exhibited different clinical parameters and responses to immune checkpoint blockades. Diverse machine learning algorithms were applied to achieve higher accuracy for survival prediction and a nomogram was further established in combination with M stage and age to provide an accurate and visual prediction of prognosis. CONCLUSIONS We identified four TME-based RC subtypes with distinct biological and clinical features. Based on those subtypes, we also proposed a degenerated 10-gene signature to predict the prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Yushan Zhao
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaohan Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Lan Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, People's Republic of China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| |
Collapse
|
7
|
Li SS, Zhai XH, Liu HL, Liu TZ, Cao TY, Chen DM, Xiao LX, Gan XQ, Cheng K, Hong WJ, Huang Y, Lian YF, Xiao J. Whole-exome sequencing analysis identifies distinct mutational profile and novel prognostic biomarkers in primary gastrointestinal diffuse large B-cell lymphoma. Exp Hematol Oncol 2022; 11:71. [PMID: 36243813 PMCID: PMC9569083 DOI: 10.1186/s40164-022-00325-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma, and about 10% of DLBCL cases primarily occur in the gastrointestinal tract. Previous reports have revealed that primary gastrointestinal-DLBCL (pGI-DLBCL) harbors different genetic mutations from other nodal or extranodal DLBCL. However, the exonic mutation profile of pGI-DLBCL has not been fully addressed. Methods We performed whole-exome sequencing of matched tumor tissues and blood samples from 53 pGI-DLBCL patients. The exonic mutation profiles were screened, and the correlations between genetic mutations and clinicopathological characteristics were analyzed. Results A total of 6,588 protein-altering events were found and the five most frequent mutated genes in our pGI-DLBCL cohort were IGLL5 (47%), TP53 (42%), BTG2 (28%), P2RY8 (26%) and PCLO (23%). Compared to the common DLBCL, significantly less or absence of MYD88 (0%), EZH2 (0%), BCL2 (2%) or CD79B (8%) mutations were identified in pGI-DLBCL. The recurrent potential driver genes were mainly enriched in pathways related to signal transduction, infectious disease and immune regulation. In addition, HBV infection had an impact on the mutational signature in pGI-DLBCL, as positive HBsAg was significantly associated with the TP53 and LRP1B mutations, two established tumor suppressor genes in many human cancers. Moreover, IGLL5 and LRP1B mutations were significantly correlated with patient overall survival and could serve as two novel prognostic biomarkers in pGI-DLBCL. Conclusions Our study provides a comprehensive view of the exonic mutation profile of the largest pGI-DLBCL cohort to date. The results could facilitate the clinical development of novel therapeutic and prognostic biomarkers for pGI-DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00325-7.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xiao-Hui Zhai
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Hai-Ling Liu
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Ting-Zhi Liu
- Department of Hematology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Tai-Yuan Cao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiao-Qin Gan
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Ke Cheng
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Wan-Jia Hong
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yan Huang
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
8
|
Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Malignant Neoplasms of the Brain in Taiwan. J Pers Med 2022; 12:jpm12071161. [PMID: 35887658 PMCID: PMC9323978 DOI: 10.3390/jpm12071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Primary brain malignancy is a rare tumor with a global incidence of less than 10 per 100,000 people. Hence, there is limited power for identifying risk loci in individual studies, especially for Han Chinese. We performed a genome-wide association study (GWAS) in Taiwan, including 195 cases and 195 controls. We identified five new genes for malignant neoplasms of the brain: EDARADD (rs645507, 1p31.3, p = 7.71 × 10−5, odds ratio (OR) = 1.893), RBFOX1 (rs8044700, p = 2.35 × 10−5, OR = 2.36), LMF1 (rs3751667, p = 7.24 × 10−7, OR = 2.17), DPP6 (rs67433368, p = 8.32 × 10−5, OR = 3.94), and NDUFB9 (rs7827791, p = 9.73 × 10−6, OR = 4.42). These data support that genetic susceptibility toward GBM or non-GBM tumors is highly distinct, likely reflecting different etiologies. Combined with signaling analysis, we found that RNA modification may be related to major risk factors in primary malignant neoplasms of the brain.
Collapse
|
9
|
Yu G, Mu H, Fang F, Zhou H, Li H, Wu Q, Xiong Q, Cui Y. LRP1B mutation associates with increased tumor mutation burden and inferior prognosis in liver hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e29763. [PMID: 35777027 PMCID: PMC9239668 DOI: 10.1097/md.0000000000029763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is the most common primary liver cancer and the main cause of death in patients with cirrhosis. LRP1B is found to involve in a variety of cancers, but the association of LRP1B mutation with tumor mutation burden (TMB) and prognosis of LIHC is rarely studied. METHODS AND RESULTS Herein, we analyzed the somatic mutation data of 364 LIHC patients from The Cancer Genome Atlas (TCGA) and found that LRP1B showed elevated mutation rate. Calculation of the TMB in LRP1B mutant and LRP1B wild-type groups showed that LRP1B mutant group had higher TMB compared with that in LRP1B wild-type group. Then survival analysis was performed and the survival curve showed that LRP1B mutation was associated with poor survival outcome, and this association remained to be significant after adjusting for multiple confounding factors including age, gender, tumor stage, mutations of BRCA1, BRCA2, and POLE. CONCLUSION Collectively, our results revealed that LRP1B mutation was related to high TMB value and poor prognosis in LIHC, indicating that LRP1B mutation is probably helpful for the selection of immunotherapy and prognosis prediction in LIHC.
Collapse
Affiliation(s)
- Ge Yu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Han Mu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Huikai Li
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Yunlong Cui, Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, PR China (e-mail: )
| |
Collapse
|
10
|
Lin A, Zhou N, Zhu W, Zhang J, Wei T, Guo L, Luo P, Zhang J. Genomic and immunological profiles of small-cell lung cancer between East Asians and Caucasian. Cancer Cell Int 2022; 22:173. [PMID: 35488336 PMCID: PMC9052616 DOI: 10.1186/s12935-022-02588-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
The characterization of immunological and genomic differences in small-cell lung cancer (SCLC) between East Asian (EA) and Caucasian patients can reveal important clinical therapies for EA patients with SCLC. By sequencing and analyzing a molecular and immunological dataset of 98-SCLC patients of EA ancestry, immunogenicity, including DNA damage repair alterations and tumor mutation burden (TMB), was found to be significantly higher in the EA cohort than in the Caucasian cohort. The epithelial-mesenchymal transition (EMT) was the signaling signature with the predominant frequency of mutations across all patients in the EA cohort. Analysis of tumor-infiltrated immune cells revealed that resting lymphocytes were significantly enriched in the EA cohort. Compound-targeting analysis showed that topoisomerase inhibitors might be capable of targeting TP53 and RB1 comutations in EA SCLC patients. EA SCLC patients who harbored COL6A6 mutations had poor survival, while Caucasian SCLC patients with OTOF, ANKRD30B, and TECPR2 mutations were identified to have a shorter survival.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ningning Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jiexia Zhang
- Department of Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
11
|
Zhen Z, Shen Z, Sun P. Downregulation of Low-density lipoprotein receptor-related protein 1B (LRP1B) inhibits the progression of hepatocellular carcinoma cells by activating the endoplasmic reticulum stress signaling pathway. Bioengineered 2022; 13:9467-9481. [PMID: 35389768 PMCID: PMC9161869 DOI: 10.1080/21655979.2022.2060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high recurrence rate and mortality rate even after surgery. Low-density lipoprotein receptor-related protein 1B (LRP1B) has proven to be involved in tumor development and progression of multiple malignancies. However, the function of LRP1B in HCC progression has not been fully elucidated. Thus, we conducted this study to explore the relationship between LRP1B and HCC. Bioinformatic analyses implied that LRP1B was highly expressed in HCC tissues. High LRP1B expression was shown to be related to poor outcomes and the determination of HCC patients’ tumor stage. LRP1B deletion impeded the proliferation, migration, and invasion of HCC cells. Further investigation demonstrated that silencing LRP1B expression enhanced the sensitivity of HCC cells to doxorubicin. LRP1B deletion inhibited HCC progression by regulating the PERK-ATF4-CHOP signaling pathway. Additionally, we probed the genomic alterations of LRP1B in HCC and the impact on the prognosis of patients. Collectively, our results suggest that LRP1B plays an essential role in the promotion of HCC progression by regulating the PERK-ATF4-CHOP signaling pathway, which is a potential prognostic biomarker and a promising therapeutic target of HCC.
Collapse
Affiliation(s)
- Zili Zhen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China.,Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, P. R. China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhemin Shen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| | - Peilong Sun
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
12
|
Cheng Y, Tang R, Li X, Wang B, Cheng Y, Xiao S, Sun P, Yu W, Li C, Lin X, Zhu Y. LRP1B is a Potential Biomarker for Tumor Immunogenicity and Prognosis of HCC Patients Receiving ICI Treatment. J Hepatocell Carcinoma 2022; 9:203-220. [PMID: 35345553 PMCID: PMC8957351 DOI: 10.2147/jhc.s348785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background New predictors of the efficacy of hepatocellular carcinoma (HCC) immunotherapy are needed. The ability of a single gene mutation to predict the therapeutic effect of immune checkpoint inhibitors (ICI) in HCC remains unknown. Methods The most frequently mutated genes in HCC were analyzed using the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Mutant genes that correlated with the tumor mutational burden (TMB) and prognosis were obtained. The mutation pattern and immunological function of one of the most frequently mutated genes, LRP1B, were determined. A pan-tumor analysis of LRP1B expression, association with cancer prognosis, and immunological role was also explored. A retrospective clinical study was conducted using 102 HCC patients who received ICI treatment to further verify whether gene mutations can predict the effectiveness of immunotherapy and prognosis of HCC. Results LRP1B is among the most frequently mutated genes in HCC cohorts in TCGA and ICGC datasets. TCGA data showed that the LRP1B mutation activated immune signaling pathways and promoted mast cell activation. Patients with LRP1B mutations had significantly higher TMB than those with wild-type LRP1B. LRP1B expression correlated with the cancer-immunity cycle and immune cell infiltration. High LRP1B expression was also associated with poor survival among HCC patients. Results from the clinical study showed that HCC patients in the LRP1B mutation group had a poor response to ICI and worse prognosis than the wild-type group. The LRP1B mutation group had significantly higher TMB and mast cell infiltration in tumor tissues. Conclusion This study is the first to report that a single gene LRP1B mutation is associated with a poor clinical response to ICI treatment and negative outcomes in HCC patients. HighLRP1B expression correlated with tumor immunity and HCC prognosis.
Collapse
Affiliation(s)
- Yang Cheng
- Digestive Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Rui Tang
- Digestive Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiangzhao Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Biao Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yanling Cheng
- Digestive Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Shuzhe Xiao
- Digestive Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Penghui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenxuan Yu
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Cheng Li
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinsheng Lin
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yun Zhu
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Yun Zhu, Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Email
| |
Collapse
|
13
|
Shi L, Cao J, Lei X, Shi Y, Wu L. Multi-omics data identified TP53 and LRP1B as key regulatory gene related to immune phenotypes via EPCAM in HCC. Cancer Med 2022; 11:2145-2158. [PMID: 35150083 PMCID: PMC9119357 DOI: 10.1002/cam4.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Many studies showed that the prognosis of hepatocellular carcinoma (HCC) was significantly associated with the expressions of TP53 and LRP1B. However, the potential influence of the two genes on the malignant progression of HCC is still to be expounded. Methods According to the correlation analysis between immune cells and expression levels of TP53 and LRP1B, we filtered the immune cells to perform unsupervised clustering analysis. Integration of multi‐omic data analysis identified genetic alteration and epigenetic alteration. In addition, pathway analysis was used to explore the potential function of the differentially expressed mRNAs. According to the differentially expressed genes, we established an interaction network to seek the hub gene. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a prognosis model. Results The unsupervised clustering analysis showed that the cluster A1 showed the highest immune cell levels and the cluster B2 showed the lowest immune cell levels. Multi‐omics data analysis identified that somatic mutations, copy number variations, and DNA methylation levels had significant differences between cluster A1 and cluster B2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the upregulated mRNAs in the cluster A1 were mainly concentrated in T cell activation, external side of plasma membrane, receptor ligand activity, and cytokine−cytokine receptor interaction. Importantly, the EPCAM was identified as a critical node in the lncRNAs–miRNAs–mRNAs regulatory network correlated with the immune phenotypes. In addition, based on differentially expressed genes between cluster A1 and cluster B2, the prognostic model established by LASSO could predict the overall survival (OS) of HCC accurately. Conclusions The results indicated that the TP53 and LRP1B acted as the key genes in regulating the immune phenotypes of HCC via EPCAM.
Collapse
Affiliation(s)
- Liang Shi
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Cao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Lei
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Wu
- Department of Clinical Blood Transfusion, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Clinical Laboratory, The Central Hospital of Wenzhou, Wenzhou, China
| |
Collapse
|
14
|
Bim LV, Carneiro TNR, Buzatto VC, Colozza-Gama GA, Koyama FC, Thomaz DMD, de Jesus Paniza AC, Lee EA, Galante PAF, Cerutti JM. Molecular Signature Expands the Landscape of Driver Negative Thyroid Cancers. Cancers (Basel) 2021; 13:5184. [PMID: 34680332 PMCID: PMC8534197 DOI: 10.3390/cancers13205184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. However, the cytological diagnosis of follicular thyroid carcinoma (FTC), Hürthle cell carcinoma (HCC), and follicular variant of papillary thyroid carcinoma (FVPTC) and their benign counterparts is a challenge for preoperative diagnosis. Nearly 20-30% of biopsied thyroid nodules are classified as having indeterminate risk of malignancy and incur costs to the health care system. Based on that, 120 patients were screened for the main driver mutations previously described in thyroid cancer. Subsequently, 14 mutation-negative cases that are the main source of diagnostic errors (FTC, HCC, or FVPTC) underwent RNA-Sequencing analysis. Somatic variants in candidate driver genes (ECD, NUP98,LRP1B, NCOR1, ATM, SOS1, and SPOP) and fusions were described. NCOR1 and SPOP variants underwent validation. Moreover, expression profiling of driver-negative samples was compared to 16 BRAF V600E, RAS, or PAX8-PPARg positive samples. Negative samples were separated in two clusters, following the expression pattern of the RAS/PAX8-PPARg or BRAF V600E positive samples. Both negative groups showed distinct BRS, ERK, and TDS scores, tumor mutation burden, signaling pathways and immune cell profile. Altogether, here we report novel gene variants and describe cancer-related pathways that might impact preoperative diagnosis and provide insights into thyroid tumor biology.
Collapse
Affiliation(s)
- Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Gabriel Avelar Colozza-Gama
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Fernanda C. Koyama
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Debora Mota Dias Thomaz
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Ana Carolina de Jesus Paniza
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| |
Collapse
|
15
|
Hu S, Zhao X, Qian F, Jin C, Hou K. Correlation between LRP1B Mutations and Tumor Mutation Burden in Gastric Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1522250. [PMID: 34603481 PMCID: PMC8481040 DOI: 10.1155/2021/1522250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND It has been shown that low-density lipoprotein receptor-related protein 1B (LRP1B) mutations correlate with tumor mutation burden (TMB) and prognosis in patients with melanoma and non-small-cell lung cancer, while the relationship between LRP1B mutations and TMB in gastric cancer needs further study. This study is aimed at exploring the relationship between LRP1B mutations and TMB in gastric cancer. METHODS Mutation frequency profiles of the genes in patients with gastric cancer in TCGA-STAD dataset were analyzed by bioinformatics analysis. The relationship among LRP1B mutations, TMB, and patient clinical features in gastric cancer was investigated by the chi-square test. The TMB prediction capacity based on LRP1B mutation status was evaluated by ROC curves. RESULTS LRP1B is one of the top 10 genes with high gene mutation frequency in gastric cancer. The mutation status of LRP1B in gastric cancer patients was significantly correlated with age and TP53 and MUC16 mutation status. The result of ROC curve analysis revealed that the mutation status of LRP1B could be considered as an indicator of the degree of TMB in patients with gastric cancer. CONCLUSION This study presented the relationship between TMB and LRP1B mutations in gastric cancer, providing a novel perspective for gastric cancer prognosis and therapy.
Collapse
Affiliation(s)
- Sizhe Hu
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Zhejiang Province 322100, China
| | - Xiaokang Zhao
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Zhejiang Province 322100, China
| | - Feng Qian
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Zhejiang Province 322100, China
| | - Cancan Jin
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Zhejiang Province 322100, China
| | - Kaishun Hou
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Zhejiang Province 322100, China
| |
Collapse
|
16
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
17
|
Pozdeyev N, Fishbein L, Gay LM, Sokol ES, Hartmaier R, Ross JS, Darabi S, Demeure MJ, Kar A, Foust L, Koc K, Bowles DW, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr Relat Cancer 2021; 28:671-681. [PMID: 34410225 PMCID: PMC8384129 DOI: 10.1530/erc-21-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | | | | | | | - Jeffrey S. Ross
- Foundation Medicine Inc. Cambridge Massachusetts
- Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | - Sourat Darabi
- Hoag Family Center Institute, Newport Beach, California
| | - Michael J. Demeure
- Hoag Family Center Institute, Newport Beach, California
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lindsey Foust
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Daniel W. Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| |
Collapse
|
18
|
Han R, Chen G, Li M, Peng ZM, Xu L. Screening and clinical significance of lymph node metastasis-related genes within esophagogastric junction adenocarcinoma. Cancer Med 2021; 10:5088-5100. [PMID: 34152098 PMCID: PMC8335809 DOI: 10.1002/cam4.4065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Despite recent improvements in treatment technologies, such as surgical resection and chemoradiotherapy, the prognosis of patients with esophagogastric junction adenocarcinoma (EJA) remains poor due to early lymph node metastasis. Since few studies have investigated genes associated with lymph node metastasis in EJA, we aimed to screen lymph node metastasis‐associated genes and clarify their expression status and prognostic significance in EJA. Methods The differential frequency of mutations between carcinoma and para‐carcinoma tissues from 199 cases with EJA was detected using targeted next‐generation sequencing (tNGS). Following a stratified analysis to determine that gender has no effect on the frequency of gene mutations, lymph node metastasis‐related genes, including CDK6, MET, NOTCH1, and LRP1B, were screened, and CDK6 and LRP1B were selected for further study as they displayed significant differences in mutation rates. Differences in their expression status were verified using immunohistochemical (IHC) staining in 18 CDK6‐ and 17 LRP1B‐mutated samples and a randomly matched control group. Results tNGS revealed that CDK6 and LRP1B mutation frequencies were significantly different between EJA cases with (N ≥ 1) or without (N = 0) lymph node metastasis. In particular, CDK6 mutation frequency was expected less, whereas that of LRP1B was remarkably higher in cases with stage N0 than in those with stage N ≥ 1. IHC staining confirmed significant differences in CDK6 and LRP1B expression status between the study and control cohorts. Chi‐square tests revealed that a high CDK6 expression status correlated significantly with smoking history (p = 0.044), T stage (p = 0.035), N stage (p = 0.000), and advanced TNM stage (p = 0.001) in EJA, whereas a high LRP1B expression status only correlated with BMI (p = 0.013) and N stage (p = 0.000). Furthermore, as confirmed by survival status investigation, a high LRP1B expression status predicted good prognosis, and a high CDK6 expression status was an independent predictor of poor prognosis in patients with EJA. Conclusions Taken together, the findings of this study demonstrate that a high CDK6 and LRP1B expression status promotes and inhibits lymph node metastasis in patients with EJA, respectively, suggesting that both CDK6 and LRP1B are significantly potential predictors of lymph node metastasis and prognosis in EJA.
Collapse
Affiliation(s)
- Rui Han
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Zhong-Min Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| |
Collapse
|
19
|
Liu F, Hou W, Liang J, Zhu L, Luo C. LRP1B mutation: a novel independent prognostic factor and a predictive tumor mutation burden in hepatocellular carcinoma. J Cancer 2021; 12:4039-4048. [PMID: 34093808 PMCID: PMC8176260 DOI: 10.7150/jca.53124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally and the second leading cause of cancer-related death. Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is one of the commonly mutated genes in HCC, but its role in HCC remains unclear. In this study, we analyzed the role of LRP1B mutation in HCC. The bioinformatics results show that LRP1B had a frequency of mutation in HCC patients, and LRP1B mutation was associated with a higher tumor mutation burden (TMB), and survival analysis proved that the prognosis of HCC patients with LRP1B mutation was poor. Univariate and multivariate COX regression analysis indicated that LRP1B mutation was an independent risk factor in evaluating HCC patients' prognosis. Correlation analysis showed that LRP1B mutation status was associated with the infiltration of 2 types of immune cells and higher expression of immune checkpoint gene human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) in HCC patients. In summary, the results show that LRP1B mutation is associated with the higher TMB and poor prognosis of patients with HCC, and it was an independent risk factor for clinical outcomes of HCC patients. LRP1B gene mutations can serve as predictors in HCC patients with higher TMB and higher expression of HHLA2. The results of this study will be beneficial to future studies on targeted therapy and immunotherapy for HCC.
Collapse
Affiliation(s)
- Fahui Liu
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Wanyun Hou
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Jiadong Liang
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Lilan Zhu
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.,Medical College of Guangxi University, Nanning, 530004, Guangxi, PR China
| |
Collapse
|
20
|
Murphy SJ, Levy MJ, Smadbeck JB, Karagouga G, McCune AF, Harris FR, Udell JB, Johnson SH, Kerr SE, Cheville JC, Kipp BR, Vasmatzis G, Gleeson FC. Theragnostic chromosomal rearrangements in treatment-naive pancreatic ductal adenocarcinomas obtained via endoscopic ultrasound. J Cell Mol Med 2021; 25:4110-4123. [PMID: 33704908 PMCID: PMC8051743 DOI: 10.1111/jcmm.16381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment‐naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome‐wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome‐wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.
Collapse
Affiliation(s)
- Stephen J Murphy
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giannoula Karagouga
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexa F McCune
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Faye R Harris
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julia B Udell
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah H Johnson
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Kerr
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ferga C Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Wang L, Yan K, He X, Zhu H, Song J, Chen S, Cai S, Zhao Y, Wang L. LRP1B or TP53 mutations are associated with higher tumor mutational burden and worse survival in hepatocellular carcinoma. J Cancer 2021; 12:217-223. [PMID: 33391418 PMCID: PMC7738815 DOI: 10.7150/jca.48983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) have been proved to be beneficial for advanced HCC. Tumor mutational burden (TMB) is an important predictor for efficacy of ICIs. However, the genetic landscape of Chinese HCC patients and the association between TMB and frequently mutated genes of HCC remain unclear. Methods: Whole-exome sequencing data of 369 liver tumors from the Cancer Genome Altas (TCGA) and next generation sequencing (NGS) data of 657 liver tumors from Chinese clinical dataset were included. Results:TP53 (61.8%) was the most frequently mutated gene in the Chinese cohort, followed by CTNNB1 (17.2%), RB1 (13.7%), and LRP1B (12.3%). The PI3K-Akt signaling (11.2%), the Rap1 signaling (8.1%), and Ras signaling (7.7%), were significantly mapped. LRP1B mutations were significantly associated with higher TMB in both TCGA cohort (P = 0.0003) and Chinese cohort (P = 0.0005). And TP53 mutations were also associated with higher TMB in the TCGA and Chinese cohort (P = 0.0005 and 0.0010, respectively). Prognosis analysis performed in TCGA cohort revealed LRP1B mutations were significantly associated with shorter overall survival (OS, median, 20.9 vs 61.7 months; HR, 2.22; P = 0.0012). TP53 mutation was an independent risk factor affecting both OS (HR 1.58, P = 0.0109) and PFS (HR 1.59, P = 0.0027). Conclusions: The results suggest that LRP1B or TP53 mutations are associated with higher TMB and a poor prognostic factor in HCC.
Collapse
Affiliation(s)
- Longrong Wang
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kai Yan
- Fifth Department of Liver Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xigan He
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongxu Zhu
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Song
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shangli Cai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yiming Zhao
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
23
|
Ge W, Hu H, Cai W, Xu J, Hu W, Weng X, Qin X, Huang Y, Han W, Hu Y, Yu J, Zhang W, Ye S, Qi L, Huang P, Chen L, Ding K, Wang LD, Zheng S. High-risk Stage III colon cancer patients identified by a novel five-gene mutational signature are characterized by upregulation of IL-23A and gut bacterial translocation of the tumor microenvironment. Int J Cancer 2020; 146:2027-2035. [PMID: 31693169 DOI: 10.1002/ijc.32775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The heterogeneities of colorectal cancer (CRC) lead to staging inadequately of patients' prognosis. Here, we performed a prognostic analysis based on the tumor mutational profile and explored the characteristics of the high-risk tumors. We sequenced 338 colorectal carcinomas as the training dataset, constructed a novel five-gene (SMAD4, MUC16, COL6A3, FLG and LRP1B) prognostic signature, and validated it in an independent dataset from The Cancer Genome Atlas (TCGA). Kaplan-Meier and Cox regression analyses confirmed that the five-gene signature is an independent predictor of recurrence and prognosis in patients with Stage III colon cancer. The mutant signature translated to an increased risk of death (hazard ratio = 2.45, 95% confidence interval = 1.15-5.22, p = 0.016 in our dataset; hazard ratio = 4.78, 95% confidence interval = 1.33-17.16, p = 0.008 in TCGA dataset). RNA and bacterial 16S rRNA sequencing of high-risk tumors indicated that mutations of the five-gene signature may lead to intestinal barrier integrity, translocation of gut bacteria and deregulation of immune response and extracellular related genes. The high-risk tumors overexpressed IL23A and IL1RN genes and enriched with cancer-related bacteria (Bacteroides fragilis,Peptostreptococcus, Parvimonas, Alloprevotella and Gemella) compared to the low-risk tumors. The signature identified the high-risk group characterized by gut bacterial translocation and upregulation of interleukins of the tumor microenvironment, which was worth further researching.
Collapse
Affiliation(s)
- Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanguang Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Cai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinhong Xu
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingyue Weng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeting Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wufeng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sisi Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pingjie Huang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, State Key Laboratory for Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
E GX, Duan XH, Zhang JH, Huang YF, Zhao YJ, Na RS, Zhao ZQ, Ma YH, Chu MX, Basang WD, Zhu YB, An TW, Luo XL, Han YG, Zeng Y. Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism. 3 Biotech 2019; 9:336. [PMID: 31475088 DOI: 10.1007/s13205-019-1869-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022] Open
Abstract
Litter size is considered to be the most important index for estimating domestic animal productivity. The number of indigenous goats in China with higher litter sizes than those of commercial breeds in other countries may be helpful for accelerating genetic improvements in goat breeding. We performed a genome-wide selective sweep analysis of 31 Dazu black goats with extreme standard deviation in litter size within the third fetus to identify significant genomic regions and candidate genes through different analyses. The analysis identified a total of 33,917,703 variants, including 32,262,179 SNPs and 1,655,524 indels. In addition, two novel candidate genes (LRP1B and GLRB), which are related to litter size, were obtained with π, Tajima's D, πA/πB, and F ST at the individual level with a 95% threshold for each parameter. These two genes were annotated in five GO terms (localization, binding, macromolecular complex, membrane part, and membrane) and two pathways (long-term depression and neuroactive ligand-receptor interaction pathway). Regarding the result of linkage disequilibrium (LD) analysis, in LRP1B and GRID2, the high-yield Dazu black goats exhibit significantly different LD patterns from low-yield goats. Litter size variability has low heritability and is related to multiple complex factors found in domestic animals. Obtaining a clear explanation and significant signal by genome-wide selective sweep analysis with a small sample size is difficult. However, we investigated some candidate genes, particularly LRP1B and GLRB, which may provide useful information for further research.
Collapse
Affiliation(s)
- Guang-Xin E
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jia-Hua Zhang
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Ju Zhao
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhong-Quan Zhao
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yue-Hui Ma
- 2Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193 China
| | - Ming-Xing Chu
- 2Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193 China
| | - Wang-Dui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009 China
| | - Yan-Bin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009 China
| | - Tian-Wu An
- 4Sichuan Academy of Grassland Sciences, Chengdu, 611731 Sichuan China
| | - Xiao-Lin Luo
- 4Sichuan Academy of Grassland Sciences, Chengdu, 611731 Sichuan China
| | - Yan-Guo Han
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- 1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Presence of Chronic Obstructive Pulmonary Disease (COPD) Impair Survival in Lung Cancer Patients Receiving Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor (EGFR-TKI): A Nationwide, Population-Based Cohort Study. J Clin Med 2019; 8:jcm8071024. [PMID: 31336878 PMCID: PMC6678274 DOI: 10.3390/jcm8071024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
The emergence of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) caused a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). Although several clinicopathologic factors to predict the response to and survival on EGFR-TKI were recognized, its efficacy has not been confirmed for patients with underlying pulmonary disease, such as chronic obstructive pulmonary disease (COPD). We conducted the study to evaluate the impact of COPD on survival for NSCLC patients that underwent EGFR-TKI treatment. The nationwide study obtained clinicopathologic data from the National Health Insurance Research Database in Taiwan between 1995 and 2013. Patients receiving EGRR-TKI were divided into COPD and non-COPD groups, and adjusted for age, sex, comorbidities, premium level and cancer treatments. Overall survival (OS) and progression-free survival (PFS) were calculated by Kaplan–Meier analysis. In total, 21,026 NSCLC patients were enrolled, of which 47.6% had COPD. After propensity score (PS) matching, all covariates were adjusted and balanced except for age (p < 0.001). In the survival analysis, the median OS (2.04 vs. 2.28 years, p < 0.001) and PFS (0.62 vs. 0.69 years, p < 0.001) of lung cancer with COPD were significantly worse than those without COPD. Lung cancer patients on EGFR-TKI treatment had a worse survival outcome if patients had pre-existing COPD.
Collapse
|
26
|
Hu J, Wang Y, Zhang Y, Yu Y, Chen H, Liu K, Yao M, Wang K, Gu W, Shou T. Comprehensive genomic profiling of small cell lung cancer in Chinese patients and the implications for therapeutic potential. Cancer Med 2019; 8:4338-4347. [PMID: 31199602 PMCID: PMC6675718 DOI: 10.1002/cam4.2199] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is one of the deadliest malignancies and accounts for nearly 15% of lung cancers. Previous study had revealed the genomic characterization of SCLC in Western patients. However, little is known about that in Chinese SCLC patients. Methods Formalin‐fixed paraffin‐embedded tumor tissues and matched blood samples from 122 Chinese SCLC patients were collected for next generation sequencing to detect 450 cancer‐related genes. All pathological diagnoses were confirmed by independent pathologists. Results The most frequently altered genes were TP53 (93.4%), RB1 (78.7%), LRP1B (18.9%), KMT2D (15.6%), FAT1 (11.5%), KMT2C (11.5%), SPTA1 (11.5%), STK24 (11.5%), FAM135B (10.7%), and NOTCH1 (10.7%). The gene fusion/rearrangement detection rate was 16.4%, and mostly occurred in chromosomes 7 and 17. The rate of co‐occurring mutations of TP53 and RB1 in these Chinese SCLC patients was 74.6%, and lower than the reported Western patients (90.9%, P = 0.007). The most common gene mutations (83.6%) were found in cell cycle signaling pathway in Chinese SCLC patients. Mutation of Wnt and Notch signaling pathways in the Chinese cohort were lower than Western cohort (P = 0.0013 and 0.0068). A significant association was found between high tumor mutation burden and mutations involved in FAT1, TP53, SPTA1, KEAP1, KMT2D, MAGI2, NOTCH2, NOTCH3, FLT1, KDM6A, and FAT4. Conclusions In this study, we characterized the genomic alterations profile of Chinese SCLC patients. Compared with westerners, the genetic alterations of Chinese SCLC patients presented different patterns. Our data might provide useful information in targeted therapy and drug development for Chinese SCLC patients.
Collapse
Affiliation(s)
- Jing Hu
- Department of Medical Oncology, First People's Hospital of Yunnan Province, Kunming, China.,Department of Medical Oncology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, China
| | | | | | | | | | | | - Kai Wang
- OrigiMed, Shanghai, China.,Precision Medicine Center, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Weiguang Gu
- Department of Medical Oncology, Southern Medical University Nanfang Hospital, Foshan, China.,Department of Medical Oncology, People's Hospital of Nan Hai District, Foshan, China
| | - Tao Shou
- Department of Medical Oncology, First People's Hospital of Yunnan Province, Kunming, China.,Department of Medical Oncology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
27
|
Chen H, Chong W, Wu Q, Yao Y, Mao M, Wang X. Association of LRP1B Mutation With Tumor Mutation Burden and Outcomes in Melanoma and Non-small Cell Lung Cancer Patients Treated With Immune Check-Point Blockades. Front Immunol 2019; 10:1113. [PMID: 31164891 PMCID: PMC6536574 DOI: 10.3389/fimmu.2019.01113] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/01/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Tumor mutation burden (TMB) have been served as the most prevalent biomarkers to predict immunotherapy response. LRP1B (low-density lipoprotein receptor-related protein 1B) is frequently mutated in melanoma, non-small cell lung cancer (NSCLC) and other tumors; however, its association with TMB and survival in patients with immunotherapy remains unknown. Methods: We curated somatic mutation data and clinicopathologic information from 332 melanoma immunotherapy samples for discovery and 113 NSCLC samples for further corroboration. Bayesian variants non-negative matrix factorization was used to extract tumor mutational signatures. Multivariate Cox and logistic regression models were applied to adjust confounding factors. The CIBERSORT and GSEA algorithm were separately used to infer leukocyte relative abundance and significantly enriched pathways. Results: Patients with LRP1B mutation were identified to be associated with prolonged survival in both immunotherapy cohort. Higher tumor mutation burden was found in LRP1B mutated patients, and the association remained significant after controlling for age, gender, stage, mutations in TP53 and ATR, and mutational signatures. Immune response and cell cycle regulation circuits were among the top enriched pathways in samples with LRP1B mutations. Conclusion: Our studies suggested sequencing even a single, frequently mutated gene may provide insight into genome-wide mutational burden, and may serve as a biomarker to predict immune response.
Collapse
Affiliation(s)
- Hao Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Chong
- Key Laboratory of Cancer Prevention and Therapy, Department of Breast Cancer Pathology and Research Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qian Wu
- Department of Respiratory Medicine, Central Hospital of Zibo, Zibo, China
| | - Yueliang Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
miR-500 promotes cell proliferation by directly targetting LRP1B in prostate cancer. Biosci Rep 2019; 39:BSR20181854. [PMID: 30877185 PMCID: PMC6449515 DOI: 10.1042/bsr20181854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/10/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that miRNAs play a crucial role in the development of prostate cancer (PC); however, the role of miR-500 in PC remains poorly understood. The data presented here reveal abnormal increases in miR-500 expression in PC tissues and cell lines. Suppression of miR-500 expression significantly inhibited the proliferation of PC-3 and LnCap cells and was negatively regulative with low-density lipoprotein receptor-related protein 1B (LRP1B). Increased cell cycle arrest at the G1 stage and decreased protein expression of cyclinD1 and CDK2 was observed in response to miR-500 knockdown in PC-3 and LnCap cells, in combination with LRP1B overexpression. LRP1B was identified as a target of miR-500 and was significantly decreased in PC tissues. Taken together, these findings demonstrate that miR-500 plays an important role in the proliferation of PC cells via the inhibition of LRP1B expression.
Collapse
|
29
|
Li B, Liu C, Cheng G, Peng M, Qin X, Liu Y, Li Y, Qin D. LRP1B Polymorphisms Are Associated with Multiple Myeloma Risk in a Chinese Han Population. J Cancer 2019; 10:577-582. [PMID: 30719154 PMCID: PMC6360415 DOI: 10.7150/jca.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is an extremely complex plasma cell malignancy that is genetically heterogeneous. A recent Genome-wide association study (GWAS) indicated that variation at 2q22 (rs61070260) influences MM risk. This association has not been validated to date in a Chinese Han population. In this study, we evaluated the association between rs61070260 in LRP1B and MM risk in a Chinese Han population involving 739 MM patients and 592 healthy controls. Our results indicated that rs61070260 in LRP1B was significantly associated with MM susceptibility (P=3.937×10-37). Furthermore, the linkage disequilibrium (LD) analysis of rs61070260 revealed an LD block encompassing exons 26, 27 and 28 of the LRP1B gene, and a subsequent sequencing analysis identified three SNPs (rs762074421, rs756168629, rs113600691) in exons 26 and 28 of LRP1B. For the SNP rs756168629 in exon 26, a missense mutation which results in a transition from arginine to histidine at position 1661 of the LRP1B protein, has not been found in Chinese populations according to the Chinese Millionome Database and Genome Aggregation Database (EAS), and this mutation was predicted to be deleterious or damaging by SIFT and PolyPhen. These findings firmly establish the role of LRP1B in contributing to MM susceptibility. In addition, the identification of a rare coding mutation (p.R1661H) in LRP1B detected in MM individuals was suggested to be harmful to the encoded protein, which was characterized as a candidate tumour suppressor; thus, LRP1B is likely to be a disease-associated gene that is implicated in the development and progression of MM.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R.China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Mengle Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R.China
| | - Dongchun Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| |
Collapse
|
30
|
Rahane CS, Kutzner A, Heese K. A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature. J Neurooncol 2018; 141:57-70. [PMID: 30414097 DOI: 10.1007/s11060-018-03029-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Glioblastoma multiform (GBM) is a neural stem cell (NSC)-derived malignant brain tumor with complex genetic alterations challenging clinical treatments. FAM72 is a NSC-specific protein comprised of four paralogous genes (FAM72 A-D) in the human genome, but its functional tumorigenic significance is unclear. METHODS We conducted an in-depth expression and somatic mutation data analysis of FAM72 (A-D) in GBM using the comprehensive human clinical cancer study database cBioPortal [including The Cancer Genome Atlas (TCGA)]. RESULTS We established a FAM72 transcription profile across TCGA correlated with the expression of the proliferative marker MKI67 and a tissue-specific gene-mutation signature represented by pivotal genes involved in driving the cell cycle. FAM72 paralogs are overexpressed in cancer cells, specifically correlating with the mitotic cell cycle genes ASPM, KIF14, KIF23, CENPE, CENPE, CEP55, SGO1, and BUB1, thereby contributing to centrosome and mitotic spindle formation. FAM72 expression correlation identifies a novel GBM-specific gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B, and PIK3C2G) in the de novo pathway of primary GBM predestined as viable targets for therapeutics. CONCLUSION Our newly identified primary GBM-specific gene-mutation signature, along with FAM72, could thus provide a new basis for prognostic biomarkers for diagnostics of GBM and could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Chinmay Satish Rahane
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
31
|
Leung EY, Askarian-Amiri ME, Singleton DC, Ferraro-Peyret C, Joseph WR, Finlay GJ, Broom RJ, Kakadia PM, Bohlander SK, Marshall E, Baguley BC. Derivation of Breast Cancer Cell Lines Under Physiological (5%) Oxygen Concentrations. Front Oncol 2018; 8:425. [PMID: 30370249 PMCID: PMC6194255 DOI: 10.3389/fonc.2018.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.
Collapse
Affiliation(s)
- Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carole Ferraro-Peyret
- Univ Lyon, Claude Bernard University, Cancer Research Center of Lyon, INSERM 1052, CNRS5286, Faculty of Pharmacy, Lyon, France.,Hospices Civils de Lyon, Molecular Biology of Tumors, GHE Hospital, Bron, France
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Reuben J Broom
- Auckland City Hospital-Oncology, Grafton, Auckland, New Zealand
| | - Purvi M Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elaine Marshall
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Boucherie C, Boutin C, Jossin Y, Schakman O, Goffinet AM, Ris L, Gailly P, Tissir F. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice. Mol Psychiatry 2018; 23:723-734. [PMID: 29257130 PMCID: PMC5822457 DOI: 10.1038/mp.2017.236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
Abstract
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.
Collapse
Affiliation(s)
- C Boucherie
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - C Boutin
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Y Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell Biology, Brussels, Belgium
| | - O Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - A M Goffinet
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - L Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - P Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - F Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
34
|
Shao L, Miller S, Koschmann C, Camelo-Piragua S. Clinical Application of Whole Genome Array Improves the Diagnosis of Pediatric Brain Tumors. Int J Surg Pathol 2017; 25:688-695. [PMID: 28844173 DOI: 10.1177/1066896917727349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pediatric brain tumors are the leading cause of childhood cancer mortality. Recurring genetic abnormalities play an essential role in the diagnosis and prognosis of pediatric brain tumors. However, clinical workup has not routinely included whole genome assessment. Here, we present high resolution whole genome array results in 11 pediatric brain tumors. Array identified clinically relevant abnormalities in all samples. Copy number aberrations with targeted therapy implication, GOPC-ROS1 fusion, CDK4 amplification, and NF1 deletion, were detected in 3 cases. In addition, array detected recurring genetic abnormalities, including KIAA1549-BRAF fusion, 19q13.42 amplification, i(17q), and monosomy 6, which assisted accurate histological diagnosis in pediatric brain tumors. In conclusion, our results show that whole genome high-resolution array detects diagnostic and treatment-relevant copy number abnormalities in pediatric brain tumors.
Collapse
Affiliation(s)
- Lina Shao
- 1 University of Michigan, Ann Arbor, MI, USA
| | - Sue Miller
- 1 University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
35
|
Sundaresan V, Lin VT, Liang F, Kaye FJ, Kawabata-Iwakawa R, Shiraishi K, Kohno T, Yokota J, Zhou L. Significantly mutated genes and regulatory pathways in SCLC-a meta-analysis. Cancer Genet 2017; 216-217:20-28. [PMID: 29025592 DOI: 10.1016/j.cancergen.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/06/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers and demands effective targeted therapeutic strategies. In this meta-analysis study, we aim to identify significantly mutated genes and regulatory pathways to help us better understand the progression of SCLC and to identify potential biomarkers. Besides ranking genes based on their mutation frequencies, we sought to identify statistically significant mutations in SCLC with the MutSigCV software. Our analysis identified several genes with relatively low mutation frequency, including PTEN, as highly significant (p < 0.001), suggesting these genes may play an important role in the progression of SCLC. Our results also indicated mutations in genes involved in the axon guidance pathways likely play an important role in SCLC progression. In addition, we observed that the mutation rate was significantly higher in samples with RB1 gene mutated when compared to samples with wild type RB1, suggesting that RB1 status has significant impact on the mutation profile and disease progression in SCLC.
Collapse
Affiliation(s)
- Varsha Sundaresan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Victor T Lin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Faming Liang
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Frederic J Kaye
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA; Department of Medicine, University of Florida, Gainesville, FL, USA; UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Reika Kawabata-Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo 104-0045, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Cancer Genome Biology Group, Institute of Predictive and Personalized Medicine of Cancer, Barcelona 08916, Spain
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA; UF Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Integrative analysis of genomic sequencing data reveals higher prevalence of LRP1B mutations in lung adenocarcinoma patients with COPD. Sci Rep 2017; 7:2121. [PMID: 28522810 PMCID: PMC5437030 DOI: 10.1038/s41598-017-02405-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Both chronic Obstruction Pulmonary Disease (COPD) and lung cancer are leading causes of death globally. Although COPD and lung cancer coexist frequently, it is unknown whether lung cancer patients with COPD harbor distinct genomic characteristics compared to those without COPD. In this study, we retrospectively analyzed genomic sequencing data from 272 patients with lung adenocarcinoma (LUAD) and compared the genetic alterations in LUAD patients with and without COPD. Integrative analysis of whole-genome and exome sequencing data revealed that COPD and non-COPD groups showed high concordance in mutational burden and spectra. Notably, we also found that EGFR mutations were more prevalent in LUAD patients without COPD, whereas mutated LRP1B was more frequently observed in LUAD patients with COPD. In addition, multi-variable analysis with logistic regression demonstrated that mutation of LRP1B was a predictive marker for the presence of COPD in the patients with LUAD. Our analysis demonstrated for the first time the high concordance in genomic alterations between the tumors from LUAD patients with and without COPD. We also identified higher prevalence of LRP1B among the LUAD patients with COPD, which might help understand the underlying mechanisms which link COPD and lung cancer.
Collapse
|
37
|
Graim K, Liu TT, Achrol AS, Paull EO, Newton Y, Chang SD, Harsh GR, Cordero SP, Rubin DL, Stuart JM. Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Med Genomics 2017; 10:20. [PMID: 28359308 PMCID: PMC5374737 DOI: 10.1186/s12920-017-0256-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Background Patient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings. Methods Here, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes. Results In an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification. Conclusions Subtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiley Graim
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Tiffany Ting Liu
- Stanford Center for Biomedical Informatics Research and Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, USA.,Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA
| | - Achal S Achrol
- Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA.,Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Evan O Paull
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Yulia Newton
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Steven D Chang
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Griffith R Harsh
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sergio P Cordero
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Daniel L Rubin
- Stanford Center for Biomedical Informatics Research and Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, USA.,Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA
| | - Joshua M Stuart
- Biomedical Engineering, University of California, Santa Cruz, USA. .,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA.
| |
Collapse
|