1
|
Kauv P, Chalah MA, Créange A, Lefaucheur JP, Hodel J, Ayache SS. The corticospinal tract in multiple sclerosis: correlation between cortical excitability and magnetic resonance imaging measures. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02849-0. [PMID: 39417879 DOI: 10.1007/s00702-024-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Multiple sclerosis (MS) is a central nervous system disease involving gray and white matters. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) could help identify potential markers of disease evolution, disability, and treatment response. This work evaluates the relationship between intracortical inhibition and facilitation, motor cortex lesions, and corticospinal tract (CST) integrity. Consecutive adult patients with progressive MS were included. Sociodemographic and clinical data were collected. MRI was acquired to assess primary motor cortex lesions (double inversion and phase-sensitive inversion recovery) and CST integrity (diffusion tensor imaging). TMS outcomes were obtained: motor evoked potentials (MEP) latency, resting motor threshold, short-interval intracortical facilitation (ICF) and inhibition. Correlation analysis was performed. Twenty-five patients completed the study (13 females, age: 55.60 ± 11.49 years, Expanded Disability Status Score: 6.00 ± 1.25). Inverse correlations were found between ICF mean and each of CST radial diffusivity (RD) (ρ =-0.56; p < 0.01), CST apparent diffusion coefficient (ADC) (ρ=-0.44; p = 0.03), and disease duration (ρ=-0.46; p = 0.02). MEP latencies were directly correlated with disability scores (ρ = 0.55; p < 0.01). High ADC/RD and low ICF have been previously reported in patients with MS. While the former could reflect structural damage of the CST, the latter could hint towards an aberrant synaptic transmission as well as a depletion of facilitatory compensatory mechanisms that helps overcoming functional decline. The findings suggest concomitant structural and functional abnormalities at later disease stages that would be accompanied with a heightened disability. The results should be interpreted with caution mainly because of the small sample size that precludes further comparisons (e.g., treated vs. untreated patients, primary vs. secondary progressive MS). The role of these outcomes as potential MS biomarkers merit to be further explored.
Collapse
Affiliation(s)
- Paul Kauv
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France.
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Institut de Neuromodulation, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Neurologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jérôme Hodel
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Centre d'Imagerie Médicale Léonard de Vinci, Paris, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
2
|
Sandroff BM, Rafizadeh CM, Motl RW. Neuroimaging Technology in Exercise Neurorehabilitation Research in Persons with MS: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094530. [PMID: 37177732 PMCID: PMC10181711 DOI: 10.3390/s23094530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
There is increasing interest in the application of neuroimaging technology in exercise neurorehabilitation research among persons with multiple sclerosis (MS). The inclusion and focus on neuroimaging outcomes in MS exercise training research is critical for establishing a biological basis for improvements in functioning and elevating exercise within the neurologist's clinical armamentarium alongside disease modifying therapies as an approach for treating the disease and its consequences. Indeed, the inclusion of selective neuroimaging approaches and sensor-based technology among physical activity, mobility, and balance outcomes in such MS research might further allow for detecting specific links between the brain and real-world behavior. This paper provided a scoping review on the application of neuroimaging in exercise training research among persons with MS based on searches conducted in PubMed, Web of Science, and Scopus. We identified 60 studies on neuroimaging-technology-based (primarily MRI, which involved a variety of sequences and approaches) correlates of functions, based on multiple sensor-based measures, which are typically targets for exercise training trials in MS. We further identified 12 randomized controlled trials of exercise training effects on neuroimaging outcomes in MS. Overall, there was a large degree of heterogeneity whereby we could not identify definitive conclusions regarding a consistent neuroimaging biomarker of MS-related dysfunction or singular sensor-based measure, or consistent neural adaptation for exercise training in MS. Nevertheless, the present review provides a first step for better linking correlational and randomized controlled trial research for the development of high-quality exercise training studies on the brain in persons with MS, and this is timely given the substantial interest in exercise as a potential disease-modifying and/or neuroplasticity-inducing behavior in this population.
Collapse
Affiliation(s)
- Brian M Sandroff
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Caroline M Rafizadeh
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Cofré Lizama LE, Strik M, Van der Walt A, Kilpatrick TJ, Kolbe SC, Galea MP. Gait stability reflects motor tracts damage at early stages of multiple sclerosis. Mult Scler 2022; 28:1773-1782. [DOI: 10.1177/13524585221094464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its correlation with motor tract damage has not yet been established. Objective: To compare stability between PwMS and healthy controls (HCs) and determine associations between stability and diffusion magnetic resonance image (MRI) measures of axonal damage in selected sensorimotor tracts. Methods: Twenty-five PwMS (Expanded Disability Status Scale (EDSS) < 2.5) and 15 HCs walked on a treadmill. Stability from sacrum (LDESAC), shoulder (LDESHO) and cervical (LDECER) was calculated using the local divergence exponent (LDE). Participants underwent a 7T-MRI brain scan to obtain fibre-specific measures of axonal loss within the corticospinal tract (CST), interhemispheric sensorimotor tract (IHST) and cerebellothalamic tract (CTT). Correlation analyses between LDE and fibre density (FD) within tracts, fibre cross-section (FC) and FD modulated by FC (FDC) were conducted. Between-groups LDE differences were analysed using analysis of variance (ANOVA). Results: Correlations between all stability measures with CSTFD, between CSTFDC with LDESAC and LDECER, and LDECER with IHSTFD and IHSTFDC were significant yet moderate ( R < −0.4). Stability was significantly different between groups. Conclusions: Poorer gait stability is associated with corticospinal tract (CST) axonal loss in PwMS with no-to-low disability and is a sensitive indicator of neurodegeneration.
Collapse
Affiliation(s)
- L Eduardo Cofré Lizama
- School of Allied Health, Human Services and Sports, La Trobe University, Bundoora, VIC, Australia/Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - Myrte Strik
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - Anneke Van der Walt
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia/Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia/Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Scott C Kolbe
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mary P Galea
- Galea Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Hupperts R, Gasperini C, Lycke J, Ziemssen T, Feys P, Xiao S, Acosta C, Koster T, Hobart J. Efficacy of prolonged-release fampridine versus placebo on walking ability, dynamic and static balance, physical impact of multiple sclerosis, and quality of life: an integrated analysis of MOBILE and ENHANCE. Ther Adv Neurol Disord 2022; 15:17562864221090398. [PMID: 35601756 PMCID: PMC9121513 DOI: 10.1177/17562864221090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background: MOBILE and ENHANCE were similarly designed randomized trials of
walking-impaired adults with relapsing-remitting or progressive multiple
sclerosis (MS) who received placebo or 10 mg prolonged-release
(PR)-fampridine twice daily for 24 weeks. Both studies showed sustained and
clinically meaningful improvement in broad measures of walking and balance
over 24 weeks of PR-fampridine treatment. Objective: To evaluate the functional benefits and safety of PR-fampridine
versus placebo using a post hoc
integrated efficacy analysis of MOBILE and ENHANCE data. Methods: Data from the intention-to-treat (ITT) populations of MOBILE and ENHANCE
studies were pooled in a post hoc analysis based on the
following outcome measures: 12-item MS Walking Scale (MSWS-12), Timed Up and
Go (TUG) speed, Berg Balance Scale (BBS), MS Impact Scale physical impact
subscale (MSIS-29 PHYS), EQ-5D utility index score, visual analogue scale
(VAS), and adverse events. The primary analysis was the proportion of people
with MS (PwMS) with a mean improvement in MSWS-12 score (⩾8 points) from
baseline over 24 weeks. A subgroup analysis based on baseline
characteristics was performed. Findings: In the ITT population (N = 765; PR-fampridine,
n = 383; placebo, n = 382), a greater
proportion of PR-fampridine–treated PwMS than placebo-treated PwMS achieved
a clinically meaningful improvement in the MSWS-12 scale over 24 weeks
(44.3% versus 33.0%; p < 0.001).
PR-fampridine MSWS-12 responders demonstrated greater improvements from
baseline in TUG speed, BBS score, MSIS-29 PHYS score, and EQ-5D utility
index and VAS scores versus PR-fampridine MSWS-12
nonresponders and placebo. Subgroup analyses based on baseline
characteristics showed consistency in the effects of PR-fampridine. Conclusion: The pooled analysis of MOBILE and ENHANCE confirms previous evidence that
treatment with PR-fampridine results in clinically meaningful improvements
in walking, mobility and balance, self-reported physical impact of MS, and
quality of life and is effective across a broad range of PwMS.
Collapse
Affiliation(s)
- Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, 6130 MB Sittard, The Netherlands
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo Forlanini Hospital, Rome, Italy
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, Technical University of Dresden, Dresden, Germany
| | - Peter Feys
- REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; UMSC Hasselt, Pelt, Belgium
| | | | | | | | - Jeremy Hobart
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth Hospitals NHS Trust, Plymouth, UK
| |
Collapse
|
5
|
Tavazzi E, Cazzoli M, Pirastru A, Blasi V, Rovaris M, Bergsland N, Baglio F. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes. Front Neurosci 2021; 15:707675. [PMID: 34690670 PMCID: PMC8526725 DOI: 10.3389/fnins.2021.707675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Motor rehabilitation is routinely used in clinical practice as an effective method to reduce progressive disability gain in multiple sclerosis (MS), but rehabilitation approaches are typically unstandardized, and only few studies have investigated the impact of rehabilitation on brain neuroplasticity. Objective: To summarize and critically analyze studies applying MRI markers of functional connectivity and structural changes to assess the effect of motor rehabilitation on brain neuroplasticity in MS. Methods: Literature search was performed using PubMed and EMBASE, selecting studies having as a subject motor rehabilitation and advanced MRI techniques investigating neuroplasticity in adult patients affected by MS. Results: Seventeen out of 798 papers were selected, of which 5 applied structural MRI (4 diffusion tensor imaging, 1 volumetric measurements), 7 applied functional fMRI (5 task-related fMRI, 2 resting-state fMRI) whereas the remaining 5 applied both structural and functional imaging. Discussion: The considerable data heterogeneity and the small sample sizes characterizing the studies limit interpretation and generalization of the results. Overall, motor rehabilitation promotes clinical improvement, paralleled by positive adaptive brain changes, whose features and extent depend upon different variables, including the type of rehabilitation approach. MRI markers of functional and structural connectivity should be implemented in studies testing the efficacy of motor rehabilitation. They allow for a better understanding of neuroplastic mechanisms underlying rehabilitation-mediated clinical achievements, facilitating the identification of rehabilitation strategies tailored to patients' needs and abilities.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Marta Cazzoli
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Valeria Blasi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marco Rovaris
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | | |
Collapse
|
6
|
Govindarajan ST, Liu Y, Parra Corral MA, Bangiyev L, Krupp L, Charvet L, Duong TQ. White matter correlates of slowed information processing speed in unimpaired multiple sclerosis patients with young age onset. Brain Imaging Behav 2021; 15:1460-1468. [PMID: 32748319 DOI: 10.1007/s11682-020-00345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Slowed information processing speed is among the earliest markers of cognitive impairment in multiple sclerosis (MS) and has been associated with white matter (WM) structural integrity. Localization of WM tracts associated with slowing, but not significant impairment, on specific cognitive tasks in pediatric and young age onset MS can facilitate early and effective therapeutic intervention. Diffusion tensor imaging data were collected on 25 MS patients and 24 controls who also underwent the Symbol Digit Modalities Test (SDMT) and the computer-based Cogstate simple and choice reaction time tests. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivities were correlated voxel-wise with processing speed measures. All DTI metrics of several white matter tracts were significantly different between groups (p < 0.05). Notably, higher MD, RD, and AD, but not FA, in the corpus callosum correlated with lower scores on both SDMT and simple reaction time. Additionally, all diffusivity metrics in the left corticospinal tract correlated negatively with SDMT scores, whereas only MD in the right superior fronto-occipital fasciculus correlated with simple reaction time. In conclusion, subtle slowing of processing speed is correlated with WM damage in the visual-motor processing pathways in patients with young age of MS onset.
Collapse
Affiliation(s)
| | - Yilin Liu
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | | - Lev Bangiyev
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lauren Krupp
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Leigh Charvet
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tim Q Duong
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Strik M, Cofré Lizama LE, Shanahan CJ, van der Walt A, Boonstra FMC, Glarin R, Kilpatrick TJ, Geurts JJG, Cleary JO, Schoonheim MM, Galea MP, Kolbe SC. Axonal loss in major sensorimotor tracts is associated with impaired motor performance in minimally disabled multiple sclerosis patients. Brain Commun 2021; 3:fcab032. [PMID: 34222866 PMCID: PMC8244644 DOI: 10.1093/braincomms/fcab032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for in vivo markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways. These markers can be interrogated in specific white matter tracts that underpin important functional domains such as sensorimotor function. This study aimed to evaluate advanced diffusion MRI markers of axonal loss within the major sensorimotor tracts of the brain, and to correlate the degree of axonal loss in these tracts to precise kinematic measures of hand and foot motor control and gait in minimally disabled people with multiple sclerosis. Twenty-eight patients (Expanded Disability Status Scale < 4, and Kurtzke Functional System Scores for pyramidal and cerebellar function ≤ 2) and 18 healthy subjects underwent ultra-high field 7 Tesla diffusion MRI for calculation of fibre-specific measures of axonal loss (fibre density, reflecting diffuse axonal loss and fibre cross-section reflecting tract atrophy) within three tracts: cortico-spinal tract, interhemispheric sensorimotor tract and cerebello-thalamic tracts. A visually guided force-matching task involving either the hand or foot was used to assess visuomotor control, and three-dimensional marker-based video tracking was used to assess gait. Fibre-specific axonal markers for each tract were compared between groups and correlated with visuomotor task performance (force error and lag) and gait parameters (stance, stride length, step width, single and double support) in patients. Patients displayed significant regional loss of fibre cross-section with minimal loss of fibre density in all tracts of interest compared to healthy subjects (family-wise error corrected p-value < 0.05), despite relatively few focal lesions within these tracts. In patients, reduced axonal fibre density and cross-section within the corticospinal tracts and interhemispheric sensorimotor tracts were associated with larger force tracking error and gait impairments (shorter stance, smaller step width and longer double support) (family-wise error corrected p-value < 0.05). In conclusion, significant gait and motor control impairments can be detected in minimally disabled people with multiple sclerosis that correlated with axonal loss in major sensorimotor pathways of the brain. Given that axonal loss is irreversible, the combined use of advanced imaging and kinematic markers could be used to identify patients at risk of more severe motor impairments as they emerge for more aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Myrte Strik
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, the Netherlands
| | - L Eduardo Cofré Lizama
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
- School of Allied Health, Human Services and Sports, La Trobe University, Victoria 3086, Australia
| | - Camille J Shanahan
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
| | - Anneke van der Walt
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Frederique M C Boonstra
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Rebecca Glarin
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville 3050, Australia
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, the Netherlands
| | - Jon O Cleary
- Department of Radiology, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, the Netherlands
| | - Mary P Galea
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
8
|
Strik M, Shanahan CJ, van der Walt A, Boonstra FMC, Glarin R, Galea MP, Kilpatrick TJ, Geurts JJG, Cleary JO, Schoonheim MM, Kolbe SC. Functional correlates of motor control impairments in multiple sclerosis: A 7 Tesla task functional MRI study. Hum Brain Mapp 2021; 42:2569-2582. [PMID: 33666314 PMCID: PMC8090767 DOI: 10.1002/hbm.25389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023] Open
Abstract
Upper and lower limb impairments are common in people with multiple sclerosis (pwMS), yet difficult to clinically identify in early stages of disease progression. Tasks involving complex motor control can potentially reveal more subtle deficits in early stages, and can be performed during functional MRI (fMRI) acquisition, to investigate underlying neural mechanisms, providing markers for early motor progression. We investigated brain activation during visually guided force matching of hand or foot in 28 minimally disabled pwMS (Expanded Disability Status Scale (EDSS) < 4 and pyramidal and cerebellar Kurtzke Functional Systems Scores ≤ 2) and 17 healthy controls (HC) using ultra‐high field 7‐Tesla fMRI, allowing us to visualise sensorimotor network activity in high detail. Task activations and performance (tracking lag and error) were compared between groups, and correlations were performed. PwMS showed delayed (+124 s, p = .002) and more erroneous (+0.15 N, p = .001) lower limb tracking, together with lower cerebellar, occipital and superior parietal cortical activation compared to HC. Lower activity within these regions correlated with worse EDSS (p = .034), lower force error (p = .006) and higher lesion load (p < .05). Despite no differences in upper limb task performance, pwMS displayed lower inferior occipital cortical activation. These results demonstrate that ultra‐high field fMRI during complex hand and foot tracking can identify subtle impairments in lower limb movements and upper and lower limb brain activity, and differentiates upper and lower limb impairments in minimally disabled pwMS.
Collapse
Affiliation(s)
- Myrte Strik
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Camille J Shanahan
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Anneke van der Walt
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Frederique M C Boonstra
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Rebecca Glarin
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Mary P Galea
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jon O Cleary
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Fritz NE, Edwards EM, Keller J, Eloyan A, Calabresi PA, Zackowski KM. Combining Magnetization Transfer Ratio MRI and Quantitative Measures of Walking Improves the Identification of Fallers in MS. Brain Sci 2020; 10:E822. [PMID: 33171942 PMCID: PMC7694635 DOI: 10.3390/brainsci10110822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) impacts balance and walking function, resulting in accidental falls. History of falls and clinical assessment are commonly used for fall prediction, yet these measures have limited predictive validity. Falls are multifactorial; consideration of disease-specific pathology may be critical for improving fall prediction in MS. The objective of this study was to examine the predictive value of clinical measures (i.e., walking, strength, sensation) and corticospinal tract (CST) MRI measures, both discretely and combined, to fall status in MS. Twenty-nine individuals with relapsing-remitting MS (mean ± SD age: 48.7 ± 11.5 years; 17 females; Expanded Disability Status Scale (EDSS): 4.0 (range 1-6.5); symptom duration: 11.9 ± 8.7 years; 14 fallers) participated in a 3T brain MRI including diffusion tensor imaging and magnetization transfer ratio (MTR) and clinical tests of walking, strength, sensation and falls history. Clinical measures of walking were significantly associated with CST fractional anisotropy and MTR. A model including CST MTR, walk velocity and vibration sensation explained >31% of the variance in fall status (R2 = 0.3181) and accurately distinguished 73.8% fallers, which was superior to stand-alone models that included only MRI or clinical measures. This study advances the field by combining clinical and MRI measures to improve fall prediction accuracy in MS.
Collapse
Affiliation(s)
- Nora E. Fritz
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (J.K.); (K.M.Z.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
- Program in Physical Therapy and Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA;
| | - Erin M. Edwards
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA;
| | - Jennifer Keller
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (J.K.); (K.M.Z.)
| | - Ani Eloyan
- Department of Biostatistics, Brown University, Providence, RI 02912, USA;
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA;
| | - Kathleen M. Zackowski
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (J.K.); (K.M.Z.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA;
| |
Collapse
|
10
|
Changes in structural and functional connectivity during two years of fingolimod therapy for multiple sclerosis. Magn Reson Imaging 2020; 74:113-120. [PMID: 32956806 DOI: 10.1016/j.mri.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Fingolimod, an oral drug, has been reported to reduce relapse rate in multiple sclerosis (MS). However disease progression may still occur in spite of control of inflammation. Functional imbalances within and between cerebral networks associated with disruption of structural and functional network integrity, have been reported in MS. An effective therapy is expected to stabilize such functional network integrity. OBJECTIVE The purpose of this study was to investigate changes in structural and resting-state functional connectivity of motor and cognitive networks, and associated changes in neurologic scores in MS, during 2 years of fingolimod therapy. METHODS Twenty five subjects with MS were recruited for this study. Subjects were scanned with diffusion tensor imaging (DTI) and resting-state functional connectivity MRI (fcMRI) scan protocol at 3 T with 6-month interval over a period of 2 years. Neurologic performance scores of motor and cognitive performances were also obtained. RESULTS DTI measures worsened during the 1st year and then stabilized; any trend of stabilization of fcMRI was delayed until the 2nd year. While motor performance did not change, cognitive performance showed improvement. Several baseline DTI measures correlated with relevant neurologic scores. CONCLUSION Initial worsening of motor and cognitive network was reported after 1 year of treatment, but seems DTI and fcMRI measures seem to stabilize after around one year fingolimod therapy.
Collapse
|
11
|
Motl RW, Sandroff BM, Benedict RH, Hubbard EA, Pilutti LA, Sutton BP. Do subcortical gray matter volumes and aerobic capacity account for cognitive-motor coupling in multiple sclerosis? Mult Scler 2020; 27:401-409. [PMID: 32228278 DOI: 10.1177/1352458520914822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is evidence of cognitive-motor coupling in multiple sclerosis (MS) such that the slowing of cognitive processing speed correlates with the worsening of walking speed and endurance. OBJECTIVE The current study first established the presence of cognitive-motor coupling and second examined the possibility that volumes of subcortical gray matter (SGM) structures and aerobic capacity might explain the coupling of cognitive and motor functions in persons with MS. METHODS We included data from 62 persons with clinically definite MS who underwent assessments of cognitive processing speed, walking performance, and aerobic capacity, and completed magnetic resonance imaging (MRI) within 7 days of the aforementioned assessments. RESULTS The strong correlations between cognitive processing speed and walking performance were attenuated in magnitude and not statistically significant when controlling for aerobic capacity alone and aerobic capacity and SGM volumes together. The associations between cognitive processing speed and walking performance remained statistically significant when controlling for SGM volumes alone. CONCLUSION Aerobic capacity may be an important target for neurorehabilitation-based approaches for managing co-occurring cognitive and motor dysfunction in MS.
Collapse
Affiliation(s)
- Robert W Motl
- Department of Physical Therapy, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian M Sandroff
- Department of Physical Therapy, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph Hb Benedict
- Department of Neurology, University at Buffalo, The State University of New York, New York, NY, USA
| | | | - Lara A Pilutti
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Ikuta T, Loprinzi PD. Integrity of the cortico-spinal tract is associated with physical activity. Int J Neurosci 2019; 130:413-416. [PMID: 31738651 DOI: 10.1080/00207454.2019.1694520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background and purpose: Despite the primary motor efferent role of the cortico-spinal tract (CST), it is hardly understood whether the amount of physical activity is associated with the integrity of the CST.Materials and methods: We examined the association between the amount of physical activity and the integrity of the CST, using Diffusion Tensor Imaging (DTI) data from 465 individuals. The CST was segmented by probabilistic tractography and the association of the fractional anisotropy (FA) within was tested against physical activity (PA) assessed by moderate-intensity physical activity of the International Physical Activity Questionnaire.Results: The FA and PA showed a positive association. Post-hoc analyses showed that the radial diffusivity (RD) of the CST was negatively associated with PA, suggesting a potential association with preserved myelination with PA.Conclusion: This study shows that the integrity of the CST is associated with its traffic in the general population.
Collapse
Affiliation(s)
- Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, MS, USA
| | - Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management, School of Applied Sciences, University of Mississippi, MS, USA
| |
Collapse
|
13
|
Correlation between spinal cord diffusion tensor imaging and postural response latencies in persons with multiple sclerosis: A pilot study. Magn Reson Imaging 2019; 66:226-231. [PMID: 31704395 DOI: 10.1016/j.mri.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Longer latency of postural response in multiple sclerosis (MS) may be linked to imbalance and increased likelihood of falls. It may be caused by the compromised microstructural integrity in the spinal cord, as evidenced by slowed somatosensory conduction in the spinal cord. Thus, the purpose of this study is to investigate the correlation between latency of postural responses and microstructural integrity of the cervical spinal cord, the region particularly related to the disease severity in MS, using diffusion tensor imaging (DTI) metrics. METHODS Seventeen persons with MS with mild-to-moderate disease severity were enrolled in this study. Postural response latencies of each patient were measured using electromyography of the tibialis anterior muscle (TA) and gastrocnemius muscle (GN) in response to surface perturbations. Cervical spinal cord DTI images were obtained from each patient. DTI mean, radial, axial diffusivity, and fractional anisotropy (FA) were measured between segments C4 and C6. Correlations of DTI metrics with postural response latencies, expanded disability status scale (EDSS) scores, and 25-foot walk (T25FW) were assessed using the Spearman's rank correlation coefficient at α = 0.05. RESULTS Lower FA was significantly correlated with longer latencies measured on right TA in response to forward postural perturbations (r = -0.51, p = .04). DTI metrics showed no significant correlations with EDSS scores (r = -0.06-0.09, p = .73-0.95) or T25FW (r = -0.1-0.14, p = .6-0.94). DTI metrics showed no significant differences between subjects with and without spinal cord lesions (p = .2-0.7). CONCLUSIONS Our results showed a significant correlation between lower FA in the cervical spinal cord and longer latencies measured on right TA in response to forward postural perturbations in persons with MS, suggesting that impaired cervical spinal cord microstructure assessed by DTI may be associated with the delayed postural responses.
Collapse
|
14
|
Hernandez ME, O'Donnell E, Chaparro G, Holtzer R, Izzetoglu M, Sandroff BM, Motl RW. Brain Activation Changes During Balance- and Attention-Demanding Tasks in Middle- and Older-Aged Adults With Multiple Sclerosis. Motor Control 2019; 23:498-517. [PMID: 30987505 DOI: 10.1123/mc.2018-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2023]
Abstract
Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.
Collapse
|
15
|
Cercignani M, Gandini Wheeler-Kingshott C. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR IN BIOMEDICINE 2019; 32:e3888. [PMID: 29350435 DOI: 10.1002/nbm.3888] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has been instrumental in understanding damage to the central nervous system as a result of its sensitivity to microstructural changes. Clinical applications of diffusion imaging have grown exponentially over the past couple of decades in many neurological and neurodegenerative diseases, such as multiple sclerosis (MS). For several reasons, MS has been extensively researched using advanced neuroimaging techniques, which makes it an 'example disease' to illustrate the potential of diffusion imaging for clinical applications. In addition, MS pathology is characterized by several key processes competing with each other, such as inflammation, demyelination, remyelination, gliosis and axonal loss, enabling the specificity of diffusion to be challenged. In this review, we describe how diffusion imaging can be exploited to investigate micro-, meso- and macro-scale properties of the brain structure and discuss how they are affected by different pathological substrates. Conclusions from the literature are that larger studies are needed to confirm the exciting results from initial investigations before current trends in diffusion imaging can be translated to the neurology clinic. Also, for a comprehensive understanding of pathological processes, it is essential to take a multiple-level approach, in which information at the micro-, meso- and macroscopic scales is fully integrated.
Collapse
Affiliation(s)
- Mara Cercignani
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Claudia Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
16
|
Ghanavati T, Smitt MS, Lord SR, Sachdev P, Wen W, Kochan NA, Brodaty H, Delbaere K. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people. Brain Imaging Behav 2019; 12:1488-1496. [PMID: 29297156 DOI: 10.1007/s11682-017-9787-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.
Collapse
Affiliation(s)
- Tabassom Ghanavati
- Department of Physiotherapy Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Myriam Sillevis Smitt
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Stephen R Lord
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Dementia Collaborative Research Centre UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Kim Delbaere
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
17
|
Baird JF, Hubbard EA, Sutton BP, Motl RW. The relationship between corticospinal tract integrity and lower-extremity strength is attenuated when controlling for age and sex in multiple sclerosis. Brain Res 2018; 1701:171-176. [PMID: 30213666 PMCID: PMC7906425 DOI: 10.1016/j.brainres.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/25/2022]
Abstract
Muscle weakness, particularly in the lower-extremities, is common in multiple sclerosis (MS) and seemingly results from damage along white matter pathways in the central nervous system including the corticospinal tract (CST). This study examined CST structural integrity indicated by diffusion tensor imaging (DTI) related metrics (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) as correlates of knee flexor (KF) and knee extensor (KE) muscle strength in MS. We included 36 persons with MS who underwent MRI and measurements of peak KE and KF strength using an isokinetic dynamometer. We examined associations using bivariate Spearman (rs) and partial Spearman correlation (prs) analyses controlling for age and sex. Peak KF strength was significantly associated with FA (rs = 0.42) and RD (rs = -0.36) and peak KE strength was significantly associated with MD (rs = -0.47) and RD (rs = -0.36). The correlations were attenuated after controlling for age and sex, but the relationship between KF strength and FA demonstrated a trend towards significance (prs = 0.33, p = 0.056). We provide evidence that the anatomical integrity of the CST may be associated with lower-extremity strength in MS. The attenuated correlations when controlling for age and sex suggest these factors, rather than MS per se, may be important contributors toward an association between CST DTI-metrics and KF and KE strength. Future rehabilitation trials of resistance training should consider including CST integrity as an outcome and/or predictor of strength adaptations.
Collapse
Affiliation(s)
- Jessica F Baird
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Elizabeth A Hubbard
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bradley P Sutton
- Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
19
|
Jakimovski D, Weinstock-Guttman B, Hagemeier J, Vaughn CB, Kavak KS, Gandhi S, Bennett SE, Fuchs TA, Bergsland N, Dwyer MG, Benedict RH, Zivadinov R. Walking disability measures in multiple sclerosis patients: Correlations with MRI-derived global and microstructural damage. J Neurol Sci 2018; 393:128-134. [DOI: 10.1016/j.jns.2018.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
|
20
|
Schilling KG, Gao Y, Stepniewska I, Janve V, Landman BA, Anderson AW. Anatomical accuracy of standard-practice tractography algorithms in the motor system - A histological validation in the squirrel monkey brain. Magn Reson Imaging 2018; 55:7-25. [PMID: 30213755 DOI: 10.1016/j.mri.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 01/15/2023]
Abstract
For two decades diffusion fiber tractography has been used to probe both the spatial extent of white matter pathways and the region to region connectivity of the brain. In both cases, anatomical accuracy of tractography is critical for sound scientific conclusions. Here we assess and validate the algorithms and tractography implementations that have been most widely used - often because of ease of use, algorithm simplicity, or availability offered in open source software. Comparing forty tractography results to a ground truth defined by histological tracers in the primary motor cortex on the same squirrel monkey brains, we assess tract fidelity on the scale of voxels as well as over larger spatial domains or regional connectivity. No algorithms are successful in all metrics, and, in fact, some implementations fail to reconstruct large portions of pathways or identify major points of connectivity. The accuracy is most dependent on reconstruction method and tracking algorithm, as well as the seed region and how this region is utilized. We also note a tremendous variability in the results, even though the same MR images act as inputs to all algorithms. In addition, anatomical accuracy is significantly decreased at increased distances from the seed. An analysis of the spatial errors in tractography reveals that many techniques have trouble properly leaving the gray matter, and many only reveal connectivity to adjacent regions of interest. These results show that the most commonly implemented algorithms have several shortcomings and limitations, and choices in implementations lead to very different results. This study should provide guidance for algorithm choices based on study requirements for sensitivity, specificity, or the need to identify particular connections, and should serve as a heuristic for future developments in tractography.
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Vaibhav Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Harel A, Sperling D, Petracca M, Ntranos A, Katz-Sand I, Krieger S, Lublin F, Wang Z, Liu Y, Inglese M. Brain microstructural injury occurs in patients with RRMS despite 'no evidence of disease activity'. J Neurol Neurosurg Psychiatry 2018; 89:977-982. [PMID: 29549189 DOI: 10.1136/jnnp-2017-317606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The accuracy of 'no evidence of disease activity' (NEDA) in predicting long-term clinical outcome in patients with relapsing remitting multiple sclerosis (RRMS) is unproven, and there is growing evidence that NEDA does not rule out disease worsening. We used diffusion tensor imaging (DTI) to investigate whether ongoing brain microstructural injury occurs in patients with RRMS meeting NEDA criteria. METHODS We performed a retrospective study to identify patients with RRMS visiting our centre over a 3-month period who had undergone prior longitudinal DTI evaluation at our facility spanning ≥2 years. Patients meeting NEDA criteria throughout the evaluation period were included in the NEDA group, and those not meeting NEDA criteria were included in an 'evidence of disease activity' (EDA) group. Fractional anisotropy (FA) and mean diffusivity (MD) maps were created, and annual rates of change were calculated. RESULTS We enrolled 85 patients, 39 meeting NEDA criteria. Both NEDA and EDA groups showed longitudinal DTI worsening. Yearly FA decrease was lower in the NEDA group (0.5%, p<0.0001) than in the EDA group (1.2%, p=0.003), while yearly MD increase was similar in both groups (0.8% for NEDA and EDA, both p<0.01). There was no statistical difference in deterioration within and outside of T2 lesions. DTI parameters correlated with disability scores and fatigue complaints. CONCLUSIONS White matter microstructural deterioration occurs in patients with RRMS over short-term follow-up in patients with NEDA, providing further evidence of the limitations of conventional measures and arguing for DTI in monitoring of the disease process.
Collapse
Affiliation(s)
- Asaff Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurology, Lenox Hill Hospital, New York, USA
| | - Dylan Sperling
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Achillefs Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ilana Katz-Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Krieger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yangbo Liu
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Departmentof Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Perinatal Sciences, University of Genoa andIRCCS Azienda Ospedale Università San Martino-IST, Genoa, Italy
| |
Collapse
|
22
|
Associations of functional connectivity and walking performance in multiple sclerosis. Neuropsychologia 2018; 117:8-12. [DOI: 10.1016/j.neuropsychologia.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/22/2022]
|
23
|
Diffusion tensor imaging findings in the multiple sclerosis patients and their relationships to various aspects of disability. J Neurol Sci 2018; 391:127-133. [DOI: 10.1016/j.jns.2018.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022]
|
24
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
25
|
Peterson DS, Fling BW. How changes in brain activity and connectivity are associated with motor performance in people with MS. Neuroimage Clin 2017; 17:153-162. [PMID: 29071209 PMCID: PMC5651557 DOI: 10.1016/j.nicl.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
People with multiple sclerosis (MS) exhibit pronounced changes in brain structure, activity, and connectivity. While considerable work has begun to elucidate how these neural changes contribute to behavior, the heterogeneity of symptoms and diagnoses makes interpretation of findings and application to clinical practice challenging. In particular, whether MS related changes in brain activity or brain connectivity protect against or contribute to worsening motor symptoms is unclear. With the recent emergence of neuromodulatory techniques that can alter neural activity in specific brain regions, it is critical to establish whether localized brain activation patterns are contributing to (i.e. maladaptive) or protecting against (i.e. adaptive) progression of motor symptoms. In this manuscript, we consolidate recent findings regarding changes in supraspinal structure and activity in people with MS and how these changes may contribute to motor performance. Furthermore, we discuss a hypothesis suggesting that increased neural activity during movement may be either adaptive or maladaptive depending on where in the brain this increase is observed. Specifically, we outline preliminary evidence suggesting sensorimotor cortex activity in the ipsilateral cortices may be maladaptive in people with MS. We also discuss future work that could supply data to support or refute this hypothesis, thus improving our understanding of this important topic.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Tempe, AZ, USA; Veterans Affairs Phoenix Medical Center Phoenix, AZ, USA.
| | | |
Collapse
|
26
|
Wang YT, Li YC, Kong WF, Yin LL, Pu H. Diffusion tensor imaging beyond brains: Applications in abdominal and pelvic organs. World J Meta-Anal 2017; 5:71-79. [DOI: 10.13105/wjma.v5.i3.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (MRI) provided critical functional information in addition to the anatomic profiles offered by conventional MRI, and has been enormously used in the initial diagnosis and followed evaluation of various diseases. Diffusion tensor imaging (DTI) is a newly developed and advanced technique that measures the diffusion properties including both diffusion motion and its direction in situ, and has been extensively applied in central nerve system with acknowledged success. Technical advances have enabled DTI in abdominal and pelvic organs. Its application is increasing, yet remains less understood. A systematic overview of clinical application of DTI in abdominal and pelvic organs such as liver, pancreas, kidneys, prostate, uterus, etc., is therefore presented. Exploration of techniques with less artifacts and more normative post-processing enabled generally satisfactory image quality and repeatability of measurement. DTI appears to be more valuable in the evaluation of diffused diseases of organs with highly directionally arranged structures, such as the assessment of function impairment of native and transplanted kidneys. However, the utility of DTI to diagnose focal lesions, such as liver mass, pancreatic and prostate tumor, remains limited. Besides, diffusion of different layers of the uterus and the fiber structure disruption can be depicted by DTI. Finally, a discussion of future directions of research is given. The underlying heterogeneous pathologic conditions of certain diseases need to be further differentiated, and it is suggested that DTI parameters might potentially depict certain pathologic characterization such as cell density. Nevertheless, DTI should be better integrated into the current multi-modality evaluation in clinical practice.
Collapse
|
27
|
Fritz NE, Keller J, Calabresi PA, Zackowski KM. Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis. Neuroimage Clin 2017; 14:490-498. [PMID: 28289599 PMCID: PMC5338912 DOI: 10.1016/j.nicl.2017.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/18/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023]
Abstract
At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Nora E Fritz
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins School of Medicine, Department of Physical Medicine and Rehabilitation, Baltimore, MD, USA
- Wayne State University, Program in Physical Therapy, Department of Neurology, Detroit, MI, USA
| | - Jennifer Keller
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter A Calabresi
- Johns Hopkins School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Kathleen M Zackowski
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins School of Medicine, Department of Physical Medicine and Rehabilitation, Baltimore, MD, USA
- Johns Hopkins School of Medicine, Department of Neurology, Baltimore, MD, USA
| |
Collapse
|
28
|
Gilli F, Chen X, Pachner AR, Gimi B. High-Resolution Diffusion Tensor Spinal Cord MRI Measures as Biomarkers of Disability Progression in a Rodent Model of Progressive Multiple Sclerosis. PLoS One 2016; 11:e0160071. [PMID: 27467829 PMCID: PMC4965026 DOI: 10.1371/journal.pone.0160071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
Disease in the spinal cord is a major component of disability in multiple sclerosis, yet current techniques of imaging spinal cord injury are insensitive and nonspecific. This study seeks to remove this major impediment to research in multiple sclerosis and other spinal cord diseases by identifying reliable biomarkers of disability progression using diffusion tensor imaging (DTI), a magnetic resonance imaging technique, to evaluate the spinal cord in a model of multiple sclerosis, i.e. the Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD). Mice with TMEV-IDD with varying levels of clinical disease were imaged using a 9.4T small animal MRI scanner. Axial diffusivity, radial diffusivity, and fractional anisotropy were calculated. Disability was assessed periodically using Rotarod assay and data were expressed as a neurological function index. Correlation was performed between DTI measurements and disability scores. TMEV-IDD mice displayed significant increased neurological deficits over time when compared with controls (p<0.0001). Concurrently, the values of fractional anisotropy and axial diffusivity were both decreased compared to controls (both p<0.0001), while radial diffusivity was increased (p<0.0001). Overall, fractional anisotropy changes were larger in white matter than in grey matter and differences were more pronounced in the ventral region. Lower disability scores were associated with decreased fractional anisotropy values measured in the ventral (r = 0.68; p<0.0001) and ventral-lateral (r = 0.70; p<0.0001) regions of the white matter. These data demonstrate that DTI measures of the spinal cord contribute to strengthening the association between neuroradiological markers and clinical disability, and support the use of DTI measures in spinal cord imaging in MS patients.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Xi Chen
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Andrew R. Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Barjor Gimi
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|