1
|
Nagabushana D, Srikanteswara PK, Netto A, Nagaraj K. An Indian Family with Childhood Onset of Striatal Necrosis. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
2
|
Yu X, Ji K, Lin Y, Xu X, Wang W, Li Y, Lu JQ, Zhao Y, Yan C. Leber hereditary optic neuropathy and dystonia overlapping mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes due to m.14459G>A mutation. Neurol Sci 2021; 42:5123-5130. [PMID: 33779865 DOI: 10.1007/s10072-021-05155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To report a Chinese family with combined m.14459G>A mutation and m.6064A>T mutation of which the female proband presenting unique Leber hereditary optic neuropathy and dystonia (LDYT) overlapping mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) phenotype. METHODS Clinical information of the pedigree was collected. We performed muscle biopsy and whole-length mitochondrial DNA (mtDNA) sequencing on the proband. The activity of respiratory chain complexes in immortalized lymphoblasts was determined. RESULTS The current 23-year-old proband suffered from vision decline at age 15 and developed seizures and dystonia with bilateral lesions in precentral gyri at age 18. When she was 21, the lesions in bilateral putamen were found with elevated cerebrospinal fluid lactate. Her mother had optic atrophy; one of her brother died at age 4 with respiratory distress; and the other 8-year-old brother was asymptomatic. Muscle biopsy of the proband was unremarkable. The mtDNA sequencing revealed a heteroplasmic m.14459G>A mutation and a previously unreported m.6064A>T mutation. The respiratory chain complex I activity in the proband's immortalized lymphoblasts was 50% less than the normal control; while there was no statistical difference between the proband and the normal control in the activity of complex IV. CONCLUSIONS We presented the first case exhibiting LDYT and MELAS phenotype with m.14459G>A mutation, and the decreased complex I activity contributed to the pathogenicity. Our study expanded the clinical spectrum of m.14459G>A mutation.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Geriatrics Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Li
- Department of Geriatrics Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Neuropathology, McMaster University, Hamilton, Ontario, Canada
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China. .,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China. .,Brain Science Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Finsterer J. Cerebral imaging in adult mitochondrial disorders. J Neurol Sci 2019; 404:29-35. [PMID: 31323519 DOI: 10.1016/j.jns.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Among the organs/tissues affected in mitochondrial disorders (MIDs), the brain is the second most frequently affected. Cerebral imaging may correlate with clinical findings but not necessarily. This review summarises and discusses current knowledge and recent advances concerning cerebral abnormalities on imaging in adult MIDs (≥18y). METHODS Systematic literature review. RESULTS The most common cerebral abnormalities in imaging in adult MIDs are, as in pediatric MIDs, white matter lesions, grey matter lesions, atrophy, optic atrophy, stroke-like lesions, calcifications, and ischemic stroke. Cerebral lesions may remain stable over years but some may undergo dynamic changes within shorter or longer period of times. Typical dynamic lesions are stroke-like lesions and grey matter lesions in the sense of progression or regression. Since cerebral lesions on imaging may or may not go along with clinical manifestations, it is crucial to screen all MID patients for cerebral involvement, which can be effectively accomplished by application of the MRI. CONCLUSIONS Cerebral imaging is of paramount importance for diagnosing and monitoring cerebral involvement in MIDs. Cerebral imaging in MIDs contributes to the understanding of the pathogenesis of cerebral involvement in MIDs.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Postfach 20, 1180 Vienna, Austria.
| |
Collapse
|
4
|
Mahoui S, Belkhamsa O, Ait Kaci I, Abada Bendib M, Castelnovo G. Leber optic hereditary neuropathy plus dystonia. Rev Neurol (Paris) 2019; 175:483-484. [PMID: 31221418 DOI: 10.1016/j.neurol.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 10/26/2022]
Affiliation(s)
- S Mahoui
- Department of neurology, university hospital of Ben Aknoun, Algiers, Algeria.
| | - O Belkhamsa
- Department of neurology, university hospital Nedir Mohamed, Tizi Ouzou, Algeria
| | - I Ait Kaci
- Department of neurology, university hospital of Ben Aknoun, Algiers, Algeria
| | - M Abada Bendib
- Department of neurology, university hospital of Ben Aknoun, Algiers, Algeria
| | - G Castelnovo
- Department of neurology, university hospital of Nîmes, Nîmes, France
| |
Collapse
|
5
|
Zhong S, Wen S, Qiu Y, Yu Y, Xin L, He Y, Gao X, Fang H, Hong D, Zhang J. Bilateral striatal necrosis due to homoplasmic mitochondrial 3697G>A mutation presents with incomplete penetrance and sex bias. Mol Genet Genomic Med 2019; 7:e541. [PMID: 30623604 PMCID: PMC6418351 DOI: 10.1002/mgg3.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
Background Heteroplasmic mitochondrial 3697G>A mutation has been associated with leber hereditary optic neuropathy (LHON), mitochondrial encephalopathy, lactic acidosis and stroke‐like episodes (MELAS), and LHON/MELAS overlap syndrome. However, homoplasmic m.3697G>A mutation was only found in a family with Leigh syndrome, and the phenotype and pathogenicity of this homoplasmic mutation still need to be investigated in new patients. Methods The clinical interviews were conducted in 12 individuals from a multiple‐generation inherited family. Mutations were screened through exome next‐generation sequencing and subsequently confirmed by PCR‐restriction fragment length polymorphism. Mitochondrial complex activities and ATP production rate were measured by biochemical analysis. Results The male offspring with bilateral striatal necrosis (BSN) were characterized by severe spastic dystonia and complete penetrance, while the female offspring presented with mild symptom and low penetrance. All offspring carried homoplasmic mutation of NC_012920.1: m.3697G>A, p.(Gly131Ser). Biochemical analysis revealed an isolated defect of complex I, but the magnitude of the defect was higher in the male patients than that in the female ones. The ATP production rate also exhibited a similar pattern. However, no possible modifier genes on the X chromosome were identified. Conclusion Homoplasmic m.3697G>A mutation could be associated with BSN, which expanded the clinical spectrum of m.3697G>A. Our preliminary investigations had not found the underlying modifiers to support the double hit hypothesis, while the high level of estrogens in the female patients might exert a potential compensatory effect on mutant cell metabolism.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Shumeng Wen
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Xin
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, Mississippi
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xuguang Gao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Daojun Hong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Abstract
OBJECTIVES Because the central nervous system (CNS) is the second most frequently affected organ in mitochondrial disorders (MIDs) and since paediatric MIDs are increasingly recognised, it is important to know about the morphological CNS abnormalities on imaging in these patients. This review aims at summarising and discussing current knowledge and recent advances concerning CNS imaging abnormalities in paediatric MIDs. METHODS A systematic literature review was conducted. RESULTS The most relevant CNS abnormalities in paediatric MIDs on imaging include white and grey matter lesions, stroke-like lesions as the morphological equivalent of stroke-like episodes, cerebral atrophy, calcifications, optic atrophy, and lactacidosis. Because these CNS lesions may be seen with or without clinical manifestations, it is important to screen all MID patients for cerebral involvement. Some of these lesions may remain unchanged for years whereas others may be dynamic, either in the sense of progression or regression. Typical dynamic lesions are stroke-like lesions and grey matter lesions. Clinically relevant imaging techniques for visualisation of CNS abnormalities in paediatric MIDs are computed tomography, magnetic resonance (MR) imaging, MR spectroscopy, single-photon emission computed tomography, positron-emission tomography, and angiography. CONCLUSIONS CNS imaging in paediatric MIDs is important for diagnosing and monitoring CNS involvement. It also contributes to the understanding of the underlying pathomechanisms that lead to CNS involvement in MIDs.
Collapse
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis, El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
7
|
Finsterer J, Zarrouk-Mahjoub S. Striatal necrosis due to the m.14459G>A mutation. J Neurol Sci 2017; 380:281-282. [PMID: 28709590 DOI: 10.1016/j.jns.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022]
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
8
|
Response to the letter to the editor regarding an article "Bilateral striatal necrosis caused by a founder mitochondrial 14459G>A mutation in two independent Japanese families". J Neurol Sci 2017; 380:283-284. [PMID: 28693831 DOI: 10.1016/j.jns.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/21/2022]
|