1
|
Dai T, Lou J, Kong D, Li J, Ren Q, Chen Y, Sun S, Yun Y, Sun X, Yang Y, Shao K, Li W, Zhao Y, Meng X, Yan C, Lin P, Liu S. Choroid plexus enlargement in amyotrophic lateral sclerosis patients and its correlation with clinical disability and blood-CSF barrier permeability. Fluids Barriers CNS 2024; 21:36. [PMID: 38632611 PMCID: PMC11025206 DOI: 10.1186/s12987-024-00536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.
Collapse
Affiliation(s)
- Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Jianwei Lou
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Deyuan Kong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jinyu Li
- Department of Neurology, Xiamen Branch, Zhongshan Hospital, Fudan University, 361015, Xiamen, China
| | - Qingguo Ren
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yujing Chen
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Sujuan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yan Yun
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaohan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yiru Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
| | - Shuangwu Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Tahedl M, Tan EL, Chipika RH, Hengeveld JC, Vajda A, Doherty MA, McLaughlin RL, Siah WF, Hardiman O, Bede P. Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J Neurol 2023:10.1007/s00415-023-11682-6. [PMID: 37022479 DOI: 10.1007/s00415-023-11682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Bulbar dysfunction is a cardinal feature of ALS with important quality of life and management implications. The objective of this study is the longitudinal evaluation of a large panel imaging metrics pertaining to bulbar dysfunction, encompassing cortical measures, structural and functional cortico-medullary connectivity indices and brainstem metrics. METHODS A standardised, multimodal imaging protocol was implemented with clinical and genetic profiling to systematically appraise the biomarker potential of specific metrics. A total of 198 patients with ALS and 108 healthy controls were included. RESULTS Longitudinal analyses revealed progressive structural and functional disconnection between the motor cortex and the brainstem over time. Cortical thickness reduction was an early feature on cross-sectional analyses with limited further progression on longitudinal follow-up. Receiver operating characteristic analyses of the panel of MR metrics confirmed the discriminatory potential of bulbar imaging measures between patients and controls and area-under-the-curve values increased significantly on longitudinal follow-up. C9orf72 carriers exhibited lower brainstem volumes, lower cortico-medullary structural connectivity and faster cortical thinning. Sporadic patients without bulbar symptoms, already exhibit significant brainstem and cortico-medullary connectivity alterations. DISCUSSION Our results indicate that ALS is associated with multi-level integrity change from cortex to brainstem. The demonstration of significant corticobulbar alterations in patients without bulbar symptoms confirms considerable presymptomatic disease burden in sporadic ALS. The systematic assessment of radiological measures in a single-centre academic study helps to appraise the diagnostic and monitoring utility of specific measures for future clinical and clinical trial applications.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | | | - Alice Vajda
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - We Fong Siah
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
3
|
Tahedl M, Murad A, Lope J, Hardiman O, Bede P. Evaluation and categorisation of individual patients based on white matter profiles: Single-patient diffusion data interpretation in neurodegeneration. J Neurol Sci 2021; 428:117584. [PMID: 34315000 DOI: 10.1016/j.jns.2021.117584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
The majority of radiology studies in neurodegenerative conditions infer group-level imaging traits from group comparisons. While this strategy is helpful to define phenotype-specific imaging signatures for academic use, the meaningful interpretation of single scans of individual subjects is more important in everyday clinical practice. Accordingly, we present a computational method to evaluate individual subject diffusion tensor data to highlight white matter integrity alterations. Fifty white matter tracts were quantitatively evaluated in 132 patients with amyotrophic lateral sclerosis (ALS) with respect to normative values from 100 healthy subjects. Fractional anisotropy and radial diffusivity alterations were assessed individually in each patient. The approach was validated against standard tract-based spatial statistics and further scrutinised by the assessment of 78 additional data sets with a blinded diagnosis. Our z-score-based approach readily detected white matter degeneration in individual ALS patients and helped to categorise single subjects with a 'blinded diagnosis' as likely 'ALS' or 'control'. The group-level inferences from the z-score-based approach were analogous to the standard TBSS output maps. The benefit of the z-score-based strategy is that it enables the interpretation of single DTI datasets as well as the comparison of study groups. Outputs can be summarised either visually by highlighting the affected tracts, or, listing the affected tracts in a text file with reference to normative data, making it particularly useful for clinical applications. While individual diffusion data cannot be visually appraised, our approach provides a viable framework for single-subject imaging data interpretation.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry and Psychotherapy, Institute for Psychology, University of Regensburg, Germany
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Cheng L, Tang X, Luo C, Liu D, Zhang Y, Zhang J. Fiber-specific white matter reductions in amyotrophic lateral sclerosis. Neuroimage Clin 2020; 28:102516. [PMID: 33396003 PMCID: PMC7724379 DOI: 10.1016/j.nicl.2020.102516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using metrics derived from the diffusion tensor model have documented decreased fractional anisotropy (FA) and increased mean diffusivity in the corticospinal tract (CST) and the corpus callosum (CC) in ALS. These studies, however, only focused on microstructural white matter (WM) changes, while the macrostructural alterations of WM tracts in ALS remain unknown. Moreover, studies conducted based on the diffusion tensor model cannot provide information related to specific fiber bundles and fail to clarify which biological characteristics are changing. Using a novel fixel-based analytical method that can characterize the fiber density (FD) and the fiber-bundle cross-section (FC), this study investigated both microstructural and macrostructural changes in the WM in a large cohort of patients with ALS (N = 60) compared with demographically matched healthy controls (N = 60). Compared with healthy controls, we found decreased FD, FC and fiber density and cross-section (FDC, a combined measure of the FD and FC) values in the bilateral CST and the middle posterior body of the CC in patients with ALS, suggesting not only microstructural but also macrostructural abnormalities in these fiber bundles. Additionally, we found that the mean FD and FDC values in the bilateral CST were positively correlated with the revised ALS Functional Rating Scale, indicating that these two indices may serve as potential markers for assessing the clinical severity of ALS. Thus, these findings provide initial evidence for the existence of microstructural and macrostructural abnormalities of the fiber bundles in ALS.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xie Tang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Chunxia Luo
- Department of Neurology, The First Affiliated Hospital, Third Military Medical University, Chongqing 400308, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
5
|
Canosa A, Calvo A, Moglia C, Manera U, Vasta R, Di Pede F, Cabras S, Nardo D, Arena V, Grassano M, D'Ovidio F, Van Laere K, Van Damme P, Pagani M, Chiò A. Brain metabolic changes across King's stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography study. Eur J Nucl Med Mol Imaging 2020; 48:1124-1133. [PMID: 33029654 PMCID: PMC8041703 DOI: 10.1007/s00259-020-05053-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022]
Abstract
Purpose To assess the brain metabolic correlates of the different regional extent of ALS, evaluated with the King’s staging system, using brain 18F-2-fluoro-2-deoxy-d-glucose-PET (18F-FDG-PET). Methods Three hundred ninety ALS cases with King’s stages 1, 2, and 3 (n = 390), i.e., involvement of 1, 2, and 3 body regions respectively, underwent brain 18F-FDG-PET at diagnosis. King’s stage at PET was derived from ALSFRS-R and was regressed out against whole-brain metabolism in the whole sample. The full factorial design confirmed the hypothesis that differences among groups (King’s 1, King’s 2, King’s 3, and 40 healthy controls (HC)) existed overall. Comparisons among stages and between each group and HC were performed. We included age at PET and sex as covariates. Results Brain metabolism was inversely correlated with stage in medial frontal gyrus bilaterally, and right precentral and postcentral gyri. The full factorial design resulted in a significant main effect of groups. There was no significant difference between stages 1 and 2. Comparing stage 3 to stage 1+2, a significant relative hypometabolism was highlighted in the former in the left precentral and medial frontal gyri, and in the right medial frontal, postcentral, precentral, and middle frontal gyri. The comparisons between each group and HC showed the extension of frontal metabolic changes from stage 1 to stage 3, with the larger metabolic gap between stages 2 and 3. Conclusions Our findings support the hypothesis that in ALS, the propagation of neurodegeneration follows a corticofugal, regional ordered pattern, extending from the motor cortex to posterior and anterior regions. Electronic supplementary material The online version of this article (10.1007/s00259-020-05053-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy. .,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Umberto Manera
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Rosario Vasta
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Francesca Di Pede
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Sara Cabras
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Vincenzo Arena
- Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A, Turin, Italy
| | - Maurizio Grassano
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Fabrizio D'Ovidio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven - University of Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy.,Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| |
Collapse
|
6
|
McGill RB, Steyn FJ, Ngo ST, Thorpe KA, Heggie S, Ruitenberg MJ, Henderson RD, McCombe PA, Woodruff TM. Monocytes and neutrophils are associated with clinical features in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa013. [PMID: 33033799 PMCID: PMC7530830 DOI: 10.1093/braincomms/fcaa013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
Immunity has emerged as a key player in neurodegenerative diseases such as amyotrophic lateral sclerosis, with recent studies documenting aberrant immune changes in patients and animal models. A challenging aspect of amyotrophic lateral sclerosis research is the heterogeneous nature of the disease. In this study, we investigate the associations between peripheral blood myeloid cell populations and clinical features characteristic of amyotrophic lateral sclerosis. Peripheral blood leukocytes from 23 healthy controls and 48 patients with amyotrophic lateral sclerosis were analysed to measure myeloid cell alterations. The proportion of monocytes (classical, intermediates and non-classical subpopulations) and neutrophils, as well as the expression of select surface markers, were quantitated using flow cytometry. Given the heterogeneous nature of amyotrophic lateral sclerosis, multivariable linear analyses were performed to investigate associations between patients' myeloid profile and clinical features, such as the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, bulbar subscore of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale over disease duration and respiratory function. We demonstrate a shift in monocyte subpopulations in patients with amyotrophic lateral sclerosis, with the ratio of classical to non-classical monocytes increased compared with healthy controls. In line with this, patients with greater disease severity, as determined by a lower Revised Amyotrophic Lateral Sclerosis Functional Rating Scale score, had reduced non-classical monocytes. Interestingly, patients with greater bulbar involvement had a reduction in the proportions of classical, intermediate and non-classical monocyte populations. We also revealed several notable associations between myeloid marker expression and clinical features in amyotrophic lateral sclerosis. CD16 expression on neutrophils was increased in patients with greater disease severity and a faster rate of disease progression, whereas HLA-DR expression on all monocyte populations was elevated in patients with greater respiratory impairment. This study demonstrates that patients with amyotrophic lateral sclerosis with distinct clinical features have differential myeloid cell signatures. Identified cell populations and markers may be candidates for targeted mechanistic studies and immunomodulation therapies in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Raquel B McGill
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland 4066, Australia.,The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Shyuan T Ngo
- Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland 4066, Australia.,The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kathryn A Thorpe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Susan Heggie
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland 4066, Australia
| |
Collapse
|
7
|
Bede P. The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:457-460. [PMID: 31293187 DOI: 10.1080/21678421.2019.1639195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
8
|
El Mendili MM, Querin G, Bede P, Pradat PF. Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts-Novel Techniques. Front Neurol 2019; 10:350. [PMID: 31031688 PMCID: PMC6474186 DOI: 10.3389/fneur.2019.00350] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease with no effective disease modifying therapies at present. Spinal cord degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and corticospinal tracts are invariably affected in ALS, but up to recently it has been notoriously challenging to detect and characterize spinal pathology in vivo. With recent technological advances, spinal imaging now offers unique opportunities to appraise lower motor neuron degeneration, sensory involvement, metabolic alterations, and interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used in cross-sectional and longitudinal study designs, applied to presymptomatic mutation carriers, and utilized in machine learning applications. Despite its enormous clinical and academic potential, a number of physiological, technological, and methodological challenges limit the routine use of computational spinal imaging in ALS. In this review, we provide a comprehensive overview of emerging spinal cord imaging methods and discuss their advantages, drawbacks, and biomarker potential in clinical applications, clinical trial settings, monitoring, and prognostic roles.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France
| | - Giorgia Querin
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| | - Peter Bede
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France.,Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Pierre-François Pradat
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| |
Collapse
|
9
|
Basaia S, Filippi M, Spinelli EG, Agosta F. White Matter Microstructure Breakdown in the Motor Neuron Disease Spectrum: Recent Advances Using Diffusion Magnetic Resonance Imaging. Front Neurol 2019; 10:193. [PMID: 30891004 PMCID: PMC6413536 DOI: 10.3389/fneur.2019.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder characterized by the breakdown of the motor system. The clinical spectrum of MND encompasses different phenotypes classified according to the relative involvement of the upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations, with clear prognostic implications. However, the pathophysiological differences of these phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is applying advanced neuroimaging techniques in order to elucidate the pathophysiological processes and to identify quantitative outcomes to be used in clinical trials. Diffusion tensor imaging (DTI) is a non-invasive method to detect white matter alterations involving the upper motor neuron and extra-motor white matter tracts. According to this background, the aim of this review is to highlight the key role of MRI and especially DTI, summarizing cross-sectional and longitudinal results of different approaches applied in MND. Current literature suggests that DTI is a promising tool in order to define anatomical “signatures” of the different phenotypes of MND and to track in vivo the progressive spread of pathological proteins aggregates.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 2019; 31:431-438. [PMID: 29750730 DOI: 10.1097/wco.0000000000000569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. RECENT FINDINGS The natural history of MND is now evaluated by presymptomatic, postmortem and multi-timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. SUMMARY In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
Collapse
|
11
|
Balendra R, Al Khleifat A, Fang T, Al-Chalabi A. A standard operating procedure for King's ALS clinical staging. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:159-164. [PMID: 30773950 PMCID: PMC6558284 DOI: 10.1080/21678421.2018.1556696] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Clinical stages in amyotrophic lateral sclerosis (ALS) can be measured using a simple system based on the number of CNS regions involved and requirement for gastrostomy or noninvasive ventilation (NIV). We aimed to design a standard operating procedure (SOP) to define the standardized use and application of the King’s staging system. Methods: We designed a SOP for the King’s staging system. We wrote case vignettes representative of ALS patients at different disease stages. During two workshops, we taught health care professionals how to use the SOP, then asked them to stage the vignettes using the SOP. We measured the extent to which SOP staging corresponded with correct clinical stage. Results: The reliability of staging using the SOP was excellent, with a Spearman’s Rank coefficient of 0.95 (p < 0.001), and was high for different groups of health care professionals, and for those with different levels of experience in ALS. The limits of agreement between SOP staging and actual clinical stage lie within a single stage, confirming that there is a clinically acceptable level of agreement between staging using the SOP and actual King’s clinical stage. There were also no systematic biases of the SOP over the range of stages, either for over-staging or under-staging. Conclusions: We have demonstrated that the staging SOP provides a reliable method of calculating clinical stages in ALS patients and can be used prospectively by a range of health care professionals with different levels of experience, as for example may be the case in multicentre clinical trials.
Collapse
Affiliation(s)
- Rubika Balendra
- a Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK.,b Department of Genetics, Evolution and Environment , Institute of Healthy Ageing, University College London , London , UK , and
| | - Ahmad Al Khleifat
- c Department of Basic and Clinical Neuroscience , Maurice Wohl Clinical Neuroscience Institute, King's College London , London , UK
| | - Ton Fang
- c Department of Basic and Clinical Neuroscience , Maurice Wohl Clinical Neuroscience Institute, King's College London , London , UK
| | - Ammar Al-Chalabi
- c Department of Basic and Clinical Neuroscience , Maurice Wohl Clinical Neuroscience Institute, King's College London , London , UK
| |
Collapse
|