1
|
Xie X, Zhang G, Liu N. Comprehensive analysis of abnormal methylation modification differential expression mRNAs between low-grade and high-grade intervertebral disc degeneration and its correlation with immune cells. Ann Med 2024; 56:2357742. [PMID: 38819022 PMCID: PMC11146251 DOI: 10.1080/07853890.2024.2357742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is an important cause of low back pain. The aim of this study is to identify the potential molecular mechanism of abnormal methylation-modified DNA in the progression of IDD, hoping to contribute to the diagnosis and management of IDD. METHODS Low-grade IDD (grade I-II) and high-grade IDD (grade III-V) data were downloaded from GSE70362 and GSE129789 datasets. The abnormally methylated modified differentially expressed mRNAs (DEmRNAs) were identified by differential expression analysis (screening criteria were p < .05 and |logFC| > 1) and differential methylation analysis (screening criteria were p < .05 and |δβ| > 0.1). The classification models were constructed, and the receiver operating characteristic analysis was also carried out. In addition, functional enrichment analysis and immune correlation analysis were performed and the miRNAs targeted for the abnormally methylated DEmRNAs were predicted. Finally, expression validation was performed using real-time PCR. RESULTS Compared with low-grade IDD, seven abnormal methylation-modified DEmRNAs (AOX1, IBSP, QDPR, ABLIM1, CRISPLD2, ACTC1 and EMILIN1) were identified in high-grade IDD, and the classification models of random forests (RF) and support vector machine (SVM) were constructed. Moreover, seven abnormal methylation-modified DEmRNAs and classification models have high diagnostic accuracy (area under the curve [AUC] > 0.8). We also found that AUC values of single abnormal methylation-modified DEmRNA were all lower than those of RF and SVM classification models. Pearson correlation analysis found that macrophages M2 and EMILIN1 had significant negative correlation, while macrophages M2 and IBSP had significant positive correlation. In addition, four targeted relationship pairs (hsa-miR-4728-5p-QDPR, hsa-miR-4533-ABLIM1, hsa-miR-4728-5p-ABLIM1 and hsa-miR-4534-CRISPLD2) and multiple signalling pathways (for example, PI3K-AKT signalling pathway, osteoclast differentiation and calcium signalling pathway) were also identified that may be involved in the progression of IDD. CONCLUSION The identification of abnormal methylation-modified DEmRNAs and the construction of classification models in this study were helpful for the diagnosis and management of IDD progression.
Collapse
Affiliation(s)
- Xuehu Xie
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Guoqiang Zhang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Ning Liu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
2
|
Machuca A, Peñalver GA, Garcia RAF, Martinez-Lopez A, Castillo-Lluva S, Garcia-Calvo E, Luque-Garcia JL. Advancing rhodium nanoparticle-based photodynamic cancer therapy: quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J Mater Chem B 2024. [PMID: 39453320 DOI: 10.1039/d4tb01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Rhodium nanoparticles have been recently discovered as good photosensitizers with great potential in cancer photodynamic therapy by effectively inducing cytotoxicity in cancer cells under near-infrared laser. This study evaluates the molecular mechanisms underlying such antitumoral effect through quantitative proteomics. The results revealed that rhodium nanoparticle-based photodynamic therapy disrupts tumor metabolism by downregulating key proteins involved in ATP synthesis and mitochondrial function, leading to compromised energy production. The treatment also induces oxidative stress and apoptosis while targeting the invasion capacity of cancer cells. Additionally, key proteins involved in drug resistance are also affected, demonstrating the efficacy of the treatment in a multi-drug resistant cell line. In vivo evaluation using a chicken embryo model also confirmed the effectiveness of the proposed therapy in reducing tumor growth without affecting embryo viability.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Gabriel A Peñalver
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Angelica Martinez-Lopez
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Jose L Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Yamamoto H, Okada M, Sawaguchi Y, Yamada T. Expression of opsin and visual cycle-related enzymes in fetal rat skin keratinocytes and cellular response to blue light. Biochem Biophys Rep 2024; 39:101789. [PMID: 39104840 PMCID: PMC11298612 DOI: 10.1016/j.bbrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The mechanism by which the skin, a non-visual tissue, responds to light remains unknown. To date, opsin expression has been demonstrated in keratinocytes, melanocytes, and fibroblasts, all of which are skin-derived cells. In this study, we examined whether the visual cycle, by which opsin activity is maintained, is present in skin keratinocytes. We also identified the wavelengths of light to which opsin in keratinocytes responds and explored their effects on skin keratinocytes. The fetal rat skin keratinocytes used in this study expressed OPN2, 3, and 5 in addition to enzymes involved in the visual cycle, and all-trans-retinal, which is produced by exposure to light, was reconverted to 11-cis-retinal, resulting in opsin activation. Using the production of all-trans-retinal after light exposure as an indicator, we discovered that keratinocytes responded to light at 450 nm. Furthermore, actin alpha cardiac muscle 1 expression in keratinocytes was enhanced and cell migration was suppressed by exposure to light at these wavelengths. These results indicate that keratinocytes express various opsins and have a visual cycle that keeps opsin active. Moreover, keratinocytes were shown to respond to the blue/UV region of the light spectrum, suggesting that opsin plays a role in the light response of the skin.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Health and Nutritional Sciences, Faculty of Food and Health Sciences, Aichi Shukutoku University, Nagakute City, Aichi, 480-1197, Japan
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Momo Okada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoshikazu Sawaguchi
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Toshiyuki Yamada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
4
|
Tongkrajang N, Kobpornchai P, Dubey P, Chaisri U, Kulkeaw K. Modelling amoebic brain infection caused by Balamuthia mandrillaris using a human cerebral organoid. PLoS Negl Trop Dis 2024; 18:e0012274. [PMID: 38900784 PMCID: PMC11218984 DOI: 10.1371/journal.pntd.0012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.
Collapse
Affiliation(s)
- Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Porntida Kobpornchai
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pratima Dubey
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Urai Chaisri
- Department of Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhong H, Chang L, Pei S, Kang Y, Yang L, Wu Y, Chen N, Luo Y, Zhou Y, Xie J, Xia Y. Senescence-related genes analysis in breast cancer reveals the immune microenvironment and implications for immunotherapy. Aging (Albany NY) 2024; 16:3531-3553. [PMID: 38358910 PMCID: PMC10929821 DOI: 10.18632/aging.205544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Despite the advent of precision therapy for breast cancer (BRCA) treatment, some individuals are still unable to benefit from it and have poor survival prospects as a result of the disease's high heterogeneity. Cell senescence plays a crucial role in the tumorigenesis, progression, and immune regulation of cancer and has a major impact on the tumor microenvironment. To find new treatment strategies, we aimed to investigate the potential significance of cell senescence in BRCA prognosis and immunotherapy. We created a 9-gene senescence-related signature. We evaluated the predictive power and the role of signatures in the immune microenvironment and infiltration. In vitro tests were used to validate the expression and function of the distinctive critical gene ACTC1. Our risk signature allows BRCA patients to receive a Predictive Risk Signature (PRS), which may be used to further categorize a patient's response to immunotherapy. Compared to conventional clinicopathological characteristics, PRS showed strong predictive efficacy and precise survival prediction. Moreover, PRS subgroups were examined for altered pathways, mutational patterns, and possibly useful medicines. Our research offers suggestions for incorporating senescence-based molecular classification into risk assessment and ICI therapy decision-making.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijie Chang
- Department of Neonatal Intensive Care Unit, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yifan Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Nuo Chen
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yicheng Luo
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yixiao Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
6
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Hoshimaru T, Nonoguchi N, Kosaka T, Furuse M, Kawabata S, Yagi R, Kurisu Y, Kashiwagi H, Kameda M, Takami T, Kataoka-Sasaki Y, Sasaki M, Honmou O, Hiramatsu R, Wanibuchi M. Actin Alpha 2, Smooth Muscle (ACTA2) Is Involved in the Migratory Potential of Malignant Gliomas, and Its Increased Expression at Recurrence Is a Significant Adverse Prognostic Factor. Brain Sci 2023; 13:1477. [PMID: 37891844 PMCID: PMC10605410 DOI: 10.3390/brainsci13101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant glioma is a highly invasive tumor, and elucidating the glioma invasion mechanism is essential for developing novel therapies. We aimed to highlight actin alpha 2, smooth muscle (ACTA2) as potential biomarkers of brain invasion and distant recurrence in malignant gliomas. Using the human malignant glioma cell line, U251MG, we generated ACTA2 knockdown (KD) cells treated with small interfering RNA, and the cell motility and proliferation of the ACTA2 KD group were analyzed. Furthermore, tumor samples from 12 glioma patients who underwent reoperation at the time of tumor recurrence were utilized to measure ACTA2 expression in the tumors before and after recurrence. Thereafter, we examined how ACTA2 expression correlates with the time to tumor recurrence and the mode of recurrence. The results showed that the ACTA2 KD group demonstrated a decline in the mean motion distance and proliferative capacity compared to the control group. In the clinical glioma samples, ACTA2 expression was remarkably increased in recurrent samples compared to the primary samples from the same patients, and the higher the change in ACTCA2 expression from the start to relapse, the shorter the progression-free survival. In conclusion, ACTA2 may be involved in distant recurrence in clinical gliomas.
Collapse
Affiliation(s)
- Takumi Hoshimaru
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Takuya Kosaka
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Ryokichi Yagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Yoshitaka Kurisu
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| |
Collapse
|
8
|
Uncovering Novel Features of the Pc Locus in Horn Development from Gene-Edited Holstein Cattle by RNA-Sequencing Analysis. Int J Mol Sci 2022; 23:ijms232012060. [PMID: 36292916 PMCID: PMC9603690 DOI: 10.3390/ijms232012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
The Polled Celtic (Pc) mutation locus is a genetically simple single mutation that is the best choice for breeding polled cattle using gene editing. However, the mechanism of the Pc locus for regulating horn development is unclear, so we used gene editing, somatic cell nuclear transfer and embryo transfer to obtain polled Holstein fetal bovine (gestation time 90 days) with a homozygous Pc insertion (gene-edited Holstein fetal bovine, EH) and the wild-type 90 days Holstein fetal bovine (WH) as controls. The hematoxylin-eosin (HE) staining results showed that, compared to the WH, the EH horn buds had no white keratinized projections or vacuolated keratinocytes and no thick nerve bundles under the dermal tissue. Furthermore, DNA sequencing results showed that the Pc locus was homozygously inserted into the fetal bovine genome. A total of 791 differentially expressed genes were identified by transcriptome sequencing analysis. Enrichment analysis and protein interaction analysis results of differentially expressed genes showed that abundant gene changes after Pc insertion were associated with the adhesion molecule regulation, actin expression, cytoskeletal deformation and keratin expression and keratinization. It was also noted that the results contained several genes that had been reported to be associated with the development of horn traits, such as RXFP2 and TWIST1. This study identified these changes for the first time and summarized them. The results suggested that the Pc mutant locus may inhibit neural crest cell EMT generation and keratin expression, leading to failures in neural crest cell migration and keratinization of the horn bud tissue, regulating the production of the polled phenotype.
Collapse
|
9
|
Liu L, Lv J, Lin Z, Ning Y, Li J, Liu P, Chen C. Co-Overexpression of GRK5/ACTC1 Correlates With the Clinical Parameters and Poor Prognosis of Epithelial Ovarian Cancer. Front Mol Biosci 2022; 8:785922. [PMID: 35223984 PMCID: PMC8864135 DOI: 10.3389/fmolb.2021.785922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The prognosis of epithelial ovarian cancer (EOC) is poor, and the present prognostic predictors of EOC are neither sensitive nor specific. Objective: The aim of this study was to search the prognostic biomarkers of EOC and to investigate the expression of G protein-coupled receptor kinase 5 (GRK5) and actin alpha cardiac muscle 1 (ACTC1) in EOC tissues (both paraffin-embedded and fresh-frozen tissues) and to explore their association with clinicopathological parameters and prognostic value in patients with EOC. Methods: A total of 172 paraffin-embedded cancer tissues of EOC patients diagnosed and operated at the memorial hospital of Sun Yat-sen University between December 2009 and March 2017 and 41 paratumor tissues were collected and the expression of GRK5 and ACTC1 was examined using immunohistochemistry. Furthermore, 16 fresh-frozen EOC tissues and their matched paratumor tissues were collected from the Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, between August 2013 and November 2019 and subjected to reverse-transcription quantitative PCR analysis to detect the mRNA expression of GRK5 and ACTC1. Results: The expression of GRK5 and ACTC1 was both higher in cancer tissues than in paratumor tissues. GRK5 expression was positively correlated with ACTC1 expression. In addition, GRK5, ACTC1, and GRK5/ACTC1 expression was associated with the recurrence-free survival and overall survival of EOC patients. Furthermore, multivariate logistic regression analysis indicated that GRK5+/ACTC1+ co-expression, intestinal metastasis, postoperative chemotherapy, platinum resistance, and hyperthermic intraperitoneal chemotherapy were independent prognostic factors of EOC. Conclusion: GRK5 and ACTC1 are both upregulated in EOC compared with those in paratumor tissues. The co-expression of GRK5+/ACTC1+ rather than GRK5 or ACTC1 is an independent prognostic biomarker of EOC.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Lv
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Longgang Central Hospital of Shenzhen City, Shenzhen, China
| | - Zhongqiu Lin
- Department of Gynecology Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingxia Ning
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| |
Collapse
|
10
|
Suresh R, Diaz RJ. The remodelling of actin composition as a hallmark of cancer. Transl Oncol 2021; 14:101051. [PMID: 33761369 PMCID: PMC8008238 DOI: 10.1016/j.tranon.2021.101051] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Actin is a key structural protein that makes up the cytoskeleton of cells, and plays a role in functions such as division, migration, and vesicle trafficking. It comprises six different cell-type specific isoforms: ACTA1, ACTA2, ACTB, ACTC1, ACTG1, and ACTG2. Abnormal actin isoform expression has been reported in many cancers, which led us to hypothesize that it may serve as an early biomarker of cancer. We show an overview of the different actin isoforms and highlight mechanisms by which they may contribute to tumorigenicity. Furthermore, we suggest how the aberrant expression of actin subunits can confer cells with greater proliferation ability, increased migratory capability, and chemoresistance through incorporation into the normal cellular F-actin network and altered actin binding protein interaction. Studying this fundamental change that takes place within cancer cells can further our understanding of neoplastic transformation in multiple tissue types, which can ultimately aid in the early-detection, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rahul Suresh
- Montreal Neurological Institute, Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Suresh R, Picard D, Lo R, Beaulieu J, Remke M, Diaz RJ. Expression of cell type incongruent alpha-cardiac actin 1 subunit in medulloblastoma reveals a novel mechanism for cancer cell survival and control of migration. Neurooncol Adv 2021; 3:vdab064. [PMID: 34337410 PMCID: PMC8320690 DOI: 10.1093/noajnl/vdab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Alterations in actin subunit expression have been reported in multiple cancers, but have not been investigated previously in medulloblastoma. Methods Bioinformatic analysis of multiple medulloblastoma tumor databases was performed to profile ACTC1 mRNA levels. Western blot was used to verify protein expression in established medulloblastoma cell lines. Immunofluorescence microscopy was performed to assess ACTC1 localization. Stable cell lines with ACTC1 overexpression were generated and shRNA knockdown of ACTC1 was accomplished. We used PARP1 cleavage by Western blot as a marker of apoptosis and cell survival was determined by FACS viability assay and colony formation. Cell migration with overexpression or knockdown of ACTC1 was determined by the scratch assay. Stress fiber length distribution was assessed by fluorescence microscopy. Results ACTC1 mRNA expression is highest in SHH and WNT medulloblastoma among all subgroups. ACTC1 protein was confirmed by Western blot in SHH subgroup and Group 3 subgroup cell lines with the lowest expression in Group 3 cells. Microscopy demonstrated ACTC1 co-localization with F-actin. Overexpression of ACTC1 in Group 3 cells abolished the apoptotic response to Aurora kinase B inhibition. Knockdown of ACTC1 in SHH cells and in Myc overexpressing SHH cells induced apoptosis, impaired colony formation, and inhibited migration. Changes in stress fiber length distribution in medulloblastoma cells are induced by alterations in ACTC1 abundance. Conclusions Alpha-cardiac actin (ACTC1) is expressed in SHH medulloblastoma. Expression of this protein in medulloblastoma modifies stress fiber composition and functions in promoting resistance to apoptosis induced by mitotic inhibition, enhancing cell survival, and controlling migration.
Collapse
Affiliation(s)
- Rahul Suresh
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Rita Lo
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jamie Beaulieu
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University (HHU), University Hospital Düsseldorf (UKD), Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, HHU, UKD, Düsseldorf, Germany
| | - Roberto Jose Diaz
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Faculty of Medicine, McGill University, Montreal, Québec, Canada
- Corresponding Author: Roberto Jose Diaz, MD, PhD, FRCSC, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, Quebec, H3A 2B4, Canada ()
| |
Collapse
|
12
|
Yin Y, Zou YF, Xiao Y, Wang TX, Wang YN, Dong ZC, Huo YH, Yao BC, Meng LB, Du SX. Identification of Potential Hub Genes of Atherosclerosis Through Bioinformatic Analysis. J Comput Biol 2020; 28:60-78. [PMID: 32286084 DOI: 10.1089/cmb.2019.0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases, which mainly consist of atherosclerosis (AS), are major causes of death. A great deal of research has been carried out to clarify the molecular mechanisms of AS. However, the etiology of AS remains poorly understood. To screen the potential genes of AS occurrence and development, GSE43292 and GSE57691 were obtained from the Gene Expression Omnibus (GEO) database in this study for bioinformatic analysis. First, GEO2R was used to identify differentially expressed genes (DEGs) and the functional annotation of DEGs was performed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The Search Tool for the Retrieval of Interacting Genes (STRING) tool was used to construct the protein-protein interaction network and the most important modules and core genes were mined. The results show that a total of 211 DEGs are identified. The functional changes of DEGs are mainly associated with the cellular process, catalytic activity, and protein binding. Eighteen genes were identified as core genes. Bioinformatic analysis showed that the core genes are mainly enriched in numerous processes related to actin. In conclusion, the DEGs and hub genes identified in this study may help us understand the potential etiology of the occurrence and development of AS.
Collapse
Affiliation(s)
- Yang Yin
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, P.R. China
| | - Yang-Fan Zou
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital-Sixth Medical Center, Beijing, P.R. China
| | - Yu Xiao
- Department of Basic Medicine, Peking University, Beijing, P.R. China
| | - Tian-Xi Wang
- Department of Artificial Intelligence, Hebei University of Technology, Tianjin, P.R. China
| | - Ya-Ni Wang
- Department of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhi-Cheng Dong
- Neurology Department, The Second Central Hospital of Baoding, Zhuozhou, P.R. China
| | - Yu-Hu Huo
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Bo-Chen Yao
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, P.R. China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Shuang-Xia Du
- Neurology Department, The Second Central Hospital of Baoding, Zhuozhou, P.R. China
| |
Collapse
|
13
|
Gao J, Zhang HP, Sun YH, Guo WZ, Li J, Tang HW, Guo DF, Zhang JK, Shi XY, Yu DS, Zhang XD, Wen PH, Shi JH, Zhang SJ. Synaptopodin-2 promotes hepatocellular carcinoma metastasis via calcineurin-induced nuclear-cytoplasmic translocation. Cancer Lett 2020; 482:8-18. [PMID: 32278815 DOI: 10.1016/j.canlet.2020.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC), a type of malignant liver tumor, has a grim prognosis. As a functional protein, synaptopodin-2 (SYNPO2) has been associated with malignancy; however, the expression profile and function of SYNPO2 in HCC remains unknown. Herein, we revealed that SYNPO2 was transcriptionally downregulated in HCC tissues from both The Cancer Genome Atlas cohort and our cohort, and was also decreased at the translational level as determined by western blotting and immunohistochemical staining. Furthermore, reduced SYNPO2 expression correlated significantly with short overall survival and recurrence free survival of HCC patients. Restoring SYNPO2 expression inhibited the proliferation and aggressiveness of hepatocarcinoma cells. Mechanistically, increasing the ratio of cytoplasmic SYNPO2 to nuclear SYNPO2 was positively associated with recurrence rate in HCC patients; calcineurin (CaN) activity positively correlated with cytoplasmic SYNPO2 levels in HCC tissues; and nuclear-cytoplasmic translocation of SYNPO2 was induced by CaN to facilitate metastasis of HCC through assembly of peripheral actin bundles. In short, our findings uncover a novel role of SYNPO2 in HCC metastasis via the CaN/SYNPO2/F-actin axis, and indicate that SYNPO2 may serve as a possible prognostic marker and novel therapeutic target.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Yao-Hui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Hong-Wei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Dan-Feng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Xiao-Yi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Dong-Sheng Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Xiao-Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Jia-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan Province, 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan Province, 450052, China.
| |
Collapse
|
14
|
Chen X, Pan C, Xu C, Sun Y, Geng Y, Kong L, Xiao X, Zhao Z, Zhou W, Huang L, Song Y, Zhang L. Identification of survival‑associated key genes and long non‑coding RNAs in glioblastoma multiforme by weighted gene co‑expression network analysis. Int J Mol Med 2019; 43:1709-1722. [PMID: 30816427 PMCID: PMC6414176 DOI: 10.3892/ijmm.2019.4101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumour. However, the causes of GBM are not clear, and the prognosis remains poor. The aim of the present study was to elucidate the key coding genes and long non‑coding RNAs (lncRNAs) associated with the survival time of GBM patients by obtaining the RNA expression profiles from the Chinese Glioma Genome Atlas database and conducting weighted gene co‑expression network analysis. Modules associated with overall survival (OS) were identified, and Gene Ontology and pathway enrichment analyses were performed. The hub genes of these modules were validated via survival analysis, while the biological functions of crucial lncRNAs were also analysed in the publicly available data. The results identified a survival‑associated module with 195 key genes. Among them, 33 key genes were demonstrated to be associated with OS, and the majority of these were involved in extracellular matrix‑associated and tyrosine kinase receptor signalling pathways. Furthermore, LOC541471 was identified as an OS‑associated lncRNA, and was reported to be involved in the oxidative phosphorylation of GBM with pleckstrin‑2. These findings may significantly enhance our understanding on the aetiology and underlying molecular events of GBM, while the identified candidate genes may serve as novel prognostic markers and potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lu Kong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lijie Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|