1
|
Percetti M, Zini M, Soliveri P, Cogiamanian F, Ferrara M, Orunesu E, Ranghetti A, Ferrarese C, Pezzoli G, Garavaglia B, Isaias IU, Sacilotto G. The Clinical Spectrum of ANO3-Report of a New Family and Literature Review. Mov Disord Clin Pract 2024; 11:289-297. [PMID: 38284143 DOI: 10.1002/mdc3.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Mutations in ANO3 are a rare cause of autosomal dominant isolated or combined dystonia, mainly presenting in adulthood. CASES We extensively characterize a new, large ANO3 family with six affected carriers. The proband is a young girl who had suffered from tremor and painful dystonic movements in her right arm since the age of 11 years. She later developed a diffuse dystonic tremor and mild extrapyramidal signs (ie, rigidity and hypodiadochokinesis) in her right arm. She also suffered from psychomotor delay and learning difficulties. Repeated structural and functional neuroimaging were unremarkable. A dystonic tremor was also present in her two sisters. Her paternal aunt, father, and a third older sister presented episodic postural tremor in the arms. The father and one sister also presented learning difficulties. The heterozygous p.G6V variant in ANO3 was identified in all affected subjects. LITERATURE REVIEW Stratification by age at onset divided ANO3 cases into two major groups, where younger patients displayed a more severe phenotype, probably due to variants near the scrambling domain. CONCLUSIONS We describe the phenotype of a new ANO3 family and highlight the need for functional studies to explore the impact of ANO3 variants on its phospholipid scrambling activity.
Collapse
Affiliation(s)
- Marco Percetti
- Parkinson Institute, ASST G. Pini-CTO, Milan, Italy
- School of Medicine and Surgery and Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
- Foundation IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Zini
- Parkinson Institute, ASST G. Pini-CTO, Milan, Italy
| | | | - Filippo Cogiamanian
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariarosa Ferrara
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Orunesu
- Nuclear Medicine Department, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
- Foundation IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST G. Pini-CTO, Milan, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, National Neurological Institute Carlo Besta, Milan, Italy
| | - Ioannis Ugo Isaias
- Parkinson Institute, ASST G. Pini-CTO, Milan, Italy
- University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Aihara Y, Shirota M, Kikuchi A, Katata Y, Abe Y, Niihori T, Funayama R, Nakayama K, Aoki Y, Kure S. A novel variant in the transmembrane 4 domain of ANO3 identified in a two-year-old girl with developmental delay and tremor. J Hum Genet 2023; 68:51-54. [PMID: 36167772 DOI: 10.1038/s10038-022-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
ANO3 encodes Anoctamin-3, also known as TMEM16C, a calcium-activated chloride channel. Heterozygous variants of ANO3 can cause dystonia 24, an adult-onset focal dystonia. Some pediatric cases have been reported, but most patients were intellectually normal with some exceptions. Here, we report a two-year-old girl who showed mild to moderate developmental delay, tremor, and ataxic gait, but no obvious dystonia. Trio exome sequencing identified a heterozygous de novo missense variant NM_031418.4:c.1809T>G, p.(Asn603Lys) in the ANO3 gene. Three cases with ANO3 variants and intellectual disability have been reported, including the present case. These variants were predicted to face in the same direction on the same alpha-helix (the transmembrane 4 domain), suggesting an association between these variants and childhood-onset movement disorder with intellectual disability. In pediatric cases with developmental delay and movement disorders such as tremor and ataxia, specific variants in the transmembrane 4 domain of ANO3 may be a cause, even in the absence of dystonia.
Collapse
Affiliation(s)
- Yu Aihara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yu Katata
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Abe
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Miyagi Children's Hospital, Sendai, Japan
| |
Collapse
|
3
|
Carvalho V, Martins J, Correia F, Costa M, Massano J, Temudo T. Another Twist in the Tale: Intrafamilial Phenotypic Heterogeneity in ANO3-Related Dystonia. Mov Disord Clin Pract 2021; 8:758-762. [PMID: 34307749 DOI: 10.1002/mdc3.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022] Open
Abstract
Background Mutations in the anoctamin 3 (ANO3) gene cause autosomal dominant craniocervical dystonia (DYT24), presenting from childhood to mid-life. However, in the past years, the clinical spectrum of this disorder has widened. We present a family with heterogeneous presentation, exemplifying phenotypic diversity in DYT24. Cases The index case presented with myoclonic dystonia at age 10. His family history was remarkable for cervical dystonia with myoclonus in his grandfather, cervical and upper limb dystonia along with dopa-responsive parkinsonism in his father and lower-limb dystonia in his teenage sister. Magnetic resonance imaging and blood work-ups of all the affected family members were normal. The genetic panel for inherited forms of dystonia disclosed a point mutation c.1787C > A (p.Ser596Tyr) segregated in all affected family members. Conclusions ANO3 mutations usually present with craniocervical dystonia and rarely generalized or leg dystonia. This family exemplifies the heterogeneous presentation of this disorder as well as a wide phenotypic variability within the same family.
Collapse
Affiliation(s)
- Vanessa Carvalho
- Department of Neurology Hospital Pedro Hispano/Unidade Local de Saúde de Matosinhos Matosinhos Portugal
| | - Joana Martins
- Department of Neuropediatrics, Centro Materno-Infantil do Norte Centro Hospitalar Universitário do Porto Porto Portugal
| | - Filipe Correia
- Department of Neurology Hospital Pedro Hispano/Unidade Local de Saúde de Matosinhos Matosinhos Portugal
| | - Manuela Costa
- Department of Neurology Hospital das Forças Armadas Porto Portugal
| | - João Massano
- Department of Neurology Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinical Neurosciences and Mental Health Faculty of Medicine University of Porto Porto Portugal
| | - Teresa Temudo
- Department of Neuropediatrics, Centro Materno-Infantil do Norte Centro Hospitalar Universitário do Porto Porto Portugal.,Instituto de Ciências Biomédicas Abel Salazar University of Porto Porto Portugal
| |
Collapse
|
4
|
The expanding clinical and genetic spectrum of ANO3 dystonia. Neurosci Lett 2020; 746:135590. [PMID: 33388357 DOI: 10.1016/j.neulet.2020.135590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Dystonia is a movement disorder with high clinical and genetic heterogeneity. Mutations in Anoctamin-3 (ANO3) gene have been reported to cause dystonia 24 (DYT24). This study aims to clarify the spectrum and frequency of ANO3 rare variants in Chinese populations with primary dystonia and understand the clinical and genetic features of DYT24. METHODS Sanger sequencing was used to screen all exons and exon-intron boundaries of ANO3 for rare variants in 115 primary dystonia patients. The clinical manifestations of patients with ANO3 variants in our study and previously reported literatures were further characterized. RESULTS Four distinct variants of ANO3 (c.1127A > G, c.1235 T > A, c.1531-3T > C, c.-11G > T) were identified in six unrelated individuals. Combined with our work and literature review, a total of 35 different rare variants distributed in ANO3 were identified in 62 dystonia patients. The predominant phenotype is cranio-cervical dystonia and more than half of patients develop head/limb tremor. Most of patients presented with isolated dystonia whereas few of them showed combined dystonia. The age of onset ranged from 1 to 69 years and peaked in late adulthood, while for generalized dystonia it peaked in a young age. Half of patients with generalized dystonia experienced deep brain stimulation (DBS). And all of them showed improvement of dystonia by DBS. CONCLUSIONS This study confirms a relatively high frequency of rare ANO3 variants in Chinese patients with dystonia and indicates that the late adulthood-onset, cranio-cervical dystonia seems to be an important feature of the ANO3 phenotype. Further functional studies are warranted to understand the role of ANO3 in dystonia.
Collapse
|
5
|
Jiménez de Domingo A, Lopez-Martín S, Albert J, Jiménez de la Peña M, Tirado P, Fernández-Mayoralas DM, Fernández-Perrone AL, Calleja-Pérez B, Martínez-García M, Álvarez S, Fernández-Jaén A. ANO3 and early-onset dyskinetic encephalopathy. Eur J Med Genet 2020; 63:104085. [PMID: 33045406 DOI: 10.1016/j.ejmg.2020.104085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Mutations in the ANO3 gene have been associated with autosomal dominant craniocervical dystonia. However, little else is known about the genotype-phenotype characteristics of this disorder. Here we describe a 3 years-old girl with distal myoclonic dystonia. Whole exome sequencing in trio revealed a de novo missense ANO3 variant not previously described in international databases. A global psychomotor regression was observed once dystonia was present. Brain MRI changes paralleled these findings: whereas MRI at the age of 18 months was normal, mild brain and cerebellar atrophy was observed 18 months later. These results suggest that missense mutations in ANO3 may underlie complex disorders particularly characterized by early psychomotor regression and dystonia.
Collapse
Affiliation(s)
| | - Sara Lopez-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain; Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | | | - Pilar Tirado
- Department of Pediatric Neurology. Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain; School of Medicine. Universidad Europea de Madrid, Spain.
| |
Collapse
|