1
|
Almeida VN, Radanovic M. Subcortical Aphasia: An Update. Curr Neurol Neurosci Rep 2024; 24:561-569. [PMID: 39259429 DOI: 10.1007/s11910-024-01373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW This review aims to rediscuss the leading theories concerning the role of basal ganglia and the thalamus in the genesis of aphasic symptoms in the absence of gross anatomical lesions in cortical language areas as assessed by conventional neuroimaging studies. RECENT FINDINGS New concepts in language processing and modern neuroimaging techniques have enabled some progress in resolving the impasse between the current dominant theories: (a) direct and specific linguistic processing and (b) subcortical structures as processing relays in domain-general functions. Of particular interest are studies of connectivity based on functional magnetic resonance imaging (MRI) and tractography that highlight the impact of white matter pathway lesions on aphasia development and recovery. Connectivity studies have put into evidence the central role of the arcuate fasciculus (AF), inferior frontal occipital fasciculus (IFOF), and uncinate fasciculus (UF) in the genesis of aphasia. Regarding the thalamus, its involvement in lexical-semantic processing through modulation of the frontal cortex is becoming increasingly apparent.
Collapse
Affiliation(s)
- Victor Nascimento Almeida
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, SP, 05403-903, Brazil
| | - Marcia Radanovic
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, SP, 05403-903, Brazil.
| |
Collapse
|
2
|
Weigel K, Klingner CM, Brodoehl S, Wagner F, Schwab M, Güllmar D, Mayer TE, Güttler FV, Teichgräber U, Gaser C. Normative connectome-based analysis of sensorimotor deficits in acute subcortical stroke. Front Neurosci 2024; 18:1400944. [PMID: 39184327 PMCID: PMC11344269 DOI: 10.3389/fnins.2024.1400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The interrelation between acute ischemic stroke, persistent disability, and uncertain prognosis underscores the need for improved methods to predict clinical outcomes. Traditional approaches have largely focused on analysis of clinical metrics, lesion characteristics, and network connectivity, using techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). However, these methods are not routinely used in acute stroke diagnostics. This study introduces an innovative approach that not only considers the lesion size in relation to the National Institutes of Health Stroke Scale (NIHSS score), but also evaluates the impact of disrupted fibers and their connections to cortical regions by introducing a disconnection value. By identifying fibers traversing the lesion and estimating their number within predefined regions of interest (ROIs) using a normative connectome atlas, our method bypasses the need for individual DTI scans. In our analysis of MRI data (T1 and T2) from 51 patients with acute or subacute subcortical stroke presenting with motor or sensory deficits, we used simple linear regression to assess the explanatory power of lesion size and disconnection value on NIHSS score. Subsequent hierarchical multiple linear regression analysis determined the incremental value of disconnection metrics over lesion size alone in relation to NIHSS score. Our results showed that models incorporating the disconnection value accounted for more variance than those based solely on lesion size (lesion size explained 44% variance, disconnection value 60%). Furthermore, hierarchical regression revealed a significant improvement (p < 0.001) in model fit when adding the disconnection value, confirming its critical role in stroke assessment. Our approach, which integrates a normative connectome to quantify disconnections to cortical regions, provides a significant improvement in assessing the current state of stroke impact compared to traditional measures that focus on lesion size. This is achieved by taking into account the lesion's location and the connectivity of the affected white matter tracts, providing a more comprehensive assessment of stroke severity as reflected in the NIHSS score. Future research should extend the validation of this approach to larger and more diverse populations, with a focus on refining its applicability to clinical assessment and long-term outcome prediction.
Collapse
Affiliation(s)
- Karolin Weigel
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Thomas E. Mayer
- Section Neuroradiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Felix V. Güttler
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Han Y, Jing Y, Li X, Zhou H, Deng F. Clinical characteristics of post-stroke basal ganglia aphasia and the study of language-related white matter tracts based on diffusion spectrum imaging. Neuroimage 2024; 295:120664. [PMID: 38825217 DOI: 10.1016/j.neuroimage.2024.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Stroke often damages the basal ganglia, leading to atypical and transient aphasia, indicating that post-stroke basal ganglia aphasia (PSBGA) may be related to different anatomical structural damage and functional remodeling rehabilitation mechanisms. The basal ganglia contain dense white matter tracts (WMTs). Hence, damage to the functional tract may be an essential anatomical structural basis for the development of PSBGA. METHODS We first analyzed the clinical characteristics of PSBGA in 28 patients and 15 healthy controls (HCs) using the Western Aphasia Battery and neuropsychological test batteries. Moreover, we investigated white matter injury during the acute stage using diffusion magnetic resonance imaging scans for differential tractography. Finally, we used multiple regression models in correlation tractography to analyze the relationship between various language functions and quantitative anisotropy (QA) of WMTs. RESULTS Compared with HCs, patients with PSBGA showed lower scores for fluency, comprehension (auditory word recognition and sequential commands), naming (object naming and word fluency), reading comprehension of sentences, Mini-Mental State Examination, and Montreal Cognitive Assessment, along with increased scores in Hamilton Anxiety Scale-17 and Hamilton Depression Scale-17 within 7 days after stroke onset (P < 0.05). Differential tractography revealed that patients with PSBGA had damaged fibers, including in the body fibers of the corpus callosum, left cingulum bundles, left parietal aslant tracts, bilateral superior longitudinal fasciculus II, bilateral thalamic radiation tracts, left fornix, corpus callosum tapetum, and forceps major, compared with HCs (FDR < 0.02). Correlation tractography highlighted that better comprehension was correlated with a higher QA of the left inferior fronto-occipital fasciculus (IFOF), corpus callosum forceps minor, and left extreme capsule (FDR < 0.0083). Naming was positively associated with the QA of the left IFOF, forceps minor, left arcuate fasciculus, and uncinate fasciculus (UF) (FDR < 0.0083). Word fluency of naming was also positively associated with the QA of the forceps minor, left IFOF, and thalamic radiation tracts (FDR < 0.0083). Furthermore, reading was positively correlated with the QA of the forceps minor, left IFOF, and UF (FDR < 0.0083). CONCLUSION PSBGA is primarily characterized by significantly impaired word fluency of naming and preserved repetition abilities, as well as emotional and cognitive dysfunction. Damaged limbic pathways, dorsally located tracts in the left hemisphere, and left basal ganglia pathways are involved in PSBGA pathogenesis. The results of connectometry analysis further refine the current functional localization model of higher-order neural networks associated with language functions.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, PR China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, PR China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
4
|
Farcy C, Chauvigné LAS, Laganaro M, Corre M, Ptak R, Guggisberg AG. Neural mechanisms underlying improved new-word learning with high-density transcranial direct current stimulation. Neuroimage 2024; 294:120649. [PMID: 38759354 DOI: 10.1016/j.neuroimage.2024.120649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Neurobehavioral studies have provided evidence for the effectiveness of anodal tDCS on language production, by stimulation of the left Inferior Frontal Gyrus (IFG) or of left Temporo-Parietal Junction (TPJ). However, tDCS is currently not used in clinical practice outside of trials, because behavioral effects have been inconsistent and underlying neural effects unclear. Here, we propose to elucidate the neural correlates of verb and noun learning and to determine if they can be modulated with anodal high-definition (HD) tDCS stimulation. Thirty-six neurotypical participants were randomly allocated to anodal HD-tDCS over either the left IFG, the left TPJ, or sham stimulation. On day one, participants performed a naming task (pre-test). On day two, participants underwent a new-word learning task with rare nouns and verbs concurrently to HD-tDCS for 20 min. The third day consisted of a post-test of naming performance. EEG was recorded at rest and during naming on each day. Verb learning was significantly facilitated by left IFG stimulation. HD-tDCS over the left IFG enhanced functional connectivity between the left IFG and TPJ and this correlated with improved learning. HD-tDCS over the left TPJ enabled stronger local activation of the stimulated area (as indexed by greater alpha and beta-band power decrease) during naming, but this did not translate into better learning. Thus, tDCS can induce local activation or modulation of network interactions. Only the enhancement of network interactions, but not the increase in local activation, leads to robust improvement of word learning. This emphasizes the need to develop new neuromodulation methods influencing network interactions. Our study suggests that this may be achieved through behavioral activation of one area and concomitant activation of another area with HD-tDCS.
Collapse
Affiliation(s)
- Camille Farcy
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Lea A S Chauvigné
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Marina Laganaro
- Neuropsycholinguistics Laboratory, University of Geneva, Geneva, Switzerland
| | - Marion Corre
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Radek Ptak
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Berne 3010, Switzerland.
| |
Collapse
|
5
|
Chiang H, Mudar RA, Dugas CS, Motes MA, Kraut MA, Hart J. A modified neural circuit framework for semantic memory retrieval with implications for circuit modulation to treat verbal retrieval deficits. Brain Behav 2024; 14:e3490. [PMID: 38680077 PMCID: PMC11056716 DOI: 10.1002/brb3.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.
Collapse
Affiliation(s)
- Hsueh‐Sheng Chiang
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Raksha A. Mudar
- Department of Speech and Hearing ScienceUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Christine S. Dugas
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Motes
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Kraut
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - John Hart
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
6
|
Cha S, Jeong B, Choi M, Kwon S, Lee SH, Paik NJ, Kim WS, Han CE. White matter tracts involved in subcortical unilateral spatial neglect in subacute stroke. Front Neurol 2022; 13:992107. [PMID: 36247754 PMCID: PMC9561922 DOI: 10.3389/fneur.2022.992107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUnilateral spatial neglect (USN) is common and associated with poor motor and cognitive outcomes as well as impaired quality of life following stroke. Traditionally, the neural substrates underlying USN have been thought to be cortical areas, such as the posterior parietal cortex. However, patients with stroke involving only subcortical structures may also present with USN. While only a few studies have reported on USN in subcortical stroke, the involvement of white matter tracts related to brain networks of visuospatial attention is one possible explanation for subcortical neglect. Therefore, this study aimed to investigate which specific white matter tracts are neural substrates for USN in patients with subcortical stroke.MethodsTwenty-two patients with subcortical stroke without cortical involvement who were admitted to the Department of Rehabilitation Medicine at Seoul National University Bundang Hospital were retrospectively enrolled. Nine subjects were subclassified into a “USN(+)” group, as they had at least two positive results on three tests (the Schenkenberg line bisection test, Albert's test, and house drawing test) and a score of 1 or higher on the Catherine Bergego scale. The remaining 13 subjects without abnormalities on those tests were subclassified into the “USN(–)” group. Stroke lesions on MRI were manually drawn using MRIcron software. Lesion overlapping and atlas-based analyses of MRI images were conducted. The correlation was analyzed between the overlapped lesion volumes with white matter tracts and the severity of USN (in the Albert test and the Catherine Bergego scale).ResultsLesions were more widespread in the USN(+) group than in the USN(–) group, although their locations in the right hemisphere were similar. The atlas-based analyses identified that the right cingulum in the cingulate cortex, the temporal projection of the superior longitudinal fasciculus, and the forceps minor significantly overlapped with the lesions in the USN(+) group than in the USN(–) group. The score of the Catherine Bergego scale correlated with the volume of the involved white matter tracts.ConclusionIn this study, white matter tracts associated with USN were identified in patients with subcortical stroke without any cortical involvement. Our study results, along with previous findings on subcortical USN, support that USN may result from damage to white matter pathways.
Collapse
Affiliation(s)
- Seungwoo Cha
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - ByeongChang Jeong
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, South Korea
| | - Myungwon Choi
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Sohyun Kwon
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Stephanie Hyeyoung Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Won-Seok Kim
| | - Cheol E. Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, South Korea
- *Correspondence: Cheol E. Han
| |
Collapse
|
7
|
Geva S, Schneider LM, Khan S, Lorca-Puls DL, Gajardo-Vidal A, Hope TMH, Green DW, Price CJ. Enhanced left superior parietal activation during successful speech production in patients with left dorsal striatal damage and error-prone neurotypical participants. Cereb Cortex 2022; 33:3437-3453. [PMID: 35965059 PMCID: PMC10068299 DOI: 10.1093/cercor/bhac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Functional imaging studies of neurotypical adults report activation in the left putamen during speech production. The current study asked how stroke survivors with left putamen damage are able to produce correct spoken responses during a range of speech production tasks. Using functional magnetic resonance imaging, activation during correct speech production responses was assessed in 5 stroke patients with circumscribed left dorsal striatal lesions, 66 stroke patient controls who did not have focal left dorsal striatal lesions, and 54 neurotypical adults. As a group, patients with left dorsal striatal damage (our patients of interest) showed higher activation than neurotypical controls in the left superior parietal cortex during successful speech production. This effect was not specific to patients with left dorsal striatal lesions as we observed enhanced activation in the same region in some patient controls and also in more error-prone neurotypical participants. Our results strongly suggest that enhanced left superior parietal activation supports speech production in diverse challenging circumstances, including those caused by stroke damage. They add to a growing body of literature indicating how upregulation within undamaged parts of the neural systems already recruited by neurotypical adults contributes to recovery after stroke.
Collapse
Affiliation(s)
- Sharon Geva
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
| | - Letitia M Schneider
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- Department of Cognition , Emotion, and Methods in Psychology, Faculty of Psychology, , Universitätsring 1, 1010 Vienna , Austria
- University of Vienna , Emotion, and Methods in Psychology, Faculty of Psychology, , Universitätsring 1, 1010 Vienna , Austria
| | - Shamima Khan
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- Sección Neurología , Departamento de Especialidades, Facultad de Medicina, , Victor Lamas 1290, Concepción, 4030000 , Chile
- Universidad de Concepción , Departamento de Especialidades, Facultad de Medicina, , Victor Lamas 1290, Concepción, 4030000 , Chile
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- Faculty of Health Sciences, Universidad del Desarrollo , Ainavillo 456, Concepción, 4070001 , Chile
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
| | - David W Green
- Department of Experimental Psychology , Faculty of Brain Sciences, , 26 Bedford Way, London, WC1H 0AP , United Kingdom
- University College London , Faculty of Brain Sciences, , 26 Bedford Way, London, WC1H 0AP , United Kingdom
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
- University College London , Institute of Neurology, , 12 Queen Square, London WC1N 3AR , United Kingdom
| | | |
Collapse
|
8
|
Zhang J, Zhou Z, Li L, Ye J, Shang D, Zhong S, Yao B, Xu C, Yu Y, He F, Ye X, Luo B. Cerebral perfusion mediated by thalamo-cortical functional connectivity in non-dominant thalamus affects naming ability in aphasia. Hum Brain Mapp 2021; 43:940-954. [PMID: 34698418 PMCID: PMC8764486 DOI: 10.1002/hbm.25696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023] Open
Abstract
Naming is a commonly impaired language domain in various types of aphasia. Emerging evidence supports the cortico‐subcortical circuitry subserving naming processing, although neurovascular regulation of the non‐dominant thalamic and basal ganglia subregions underlying post‐stroke naming difficulty remains unclear. Data from 25 subacute stroke patients and 26 age‐, sex‐, and education‐matched healthy volunteers were analyzed. Region‐of‐interest‐wise functional connectivity (FC) was calculated to measure the strength of cortico‐subcortical connections. Cerebral blood flow (CBF) was determined to reflect perfusion levels. Correlation and mediation analyses were performed to identify the relationship between cortico‐subcortical connectivity, regional cerebral perfusion, and naming performance. We observed increased right‐hemispheric subcortical connectivity in patients. FC between the right posterior superior temporal sulcus (pSTS) and lateral/medial prefrontal thalamus (lPFtha/mPFtha) exhibited significantly negative correlations with total naming score. Trend‐level increased CBF in subcortical nuclei, including that in the right lPFtha, and significant negative correlations between naming and regional perfusion of the right lPFtha were observed. The relationship between CBF in the right lPFtha and naming was fully mediated by the lPFtha‐pSTS connectivity in the non‐dominant hemisphere. Our findings suggest that perfusion changes in the right thalamic subregions affect naming performance through thalamo‐cortical circuits in post‐stroke aphasia. This study highlights the neurovascular pathophysiology of the non‐dominant hemisphere and demonstrates thalamic involvement in naming after stroke.
Collapse
Affiliation(s)
- Jie Zhang
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lingling Li
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuchang Zhong
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Yao
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cong Xu
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yamei Yu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangping He
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Benyan Luo
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Purcell J, Rapp B, Martin RC. Distinct Neural Substrates Support Phonological and Orthographic Working Memory: Implications for Theories of Working Memory. Front Neurol 2021; 12:681141. [PMID: 34421789 PMCID: PMC8371181 DOI: 10.3389/fneur.2021.681141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Prior behavioral and neuroimaging evidence supports a separation between working memory capacities in the phonological and orthographic domains. Although these data indicate distinct buffers for orthographic and phonological information, prior neural evidence does indicate that nearby left inferior parietal regions support both of these working memory capacities. Given that no study has directly compared their neural substrates based on data from the same individuals, it is possible that there is a common left inferior parietal region shared by both working memory capacities. In fact, those endorsing an embedded processes account of working memory might suggest that parietal involvement reflects a domain-general attentional system that directs attention to long-term memory representations in the two domains, implying that the same neural region supports the two capacities. Thus, in this work, a multivariate lesion-symptom mapping approach was used to assess the neural basis of phonological and orthographic working memory using behavioral and lesion data from the same set of 37 individuals. The results showed a separation of the neural substrates, with regions in the angular gyrus supporting orthographic working memory and with regions primarily in the supramarginal gyrus supporting phonological working memory. The results thus argue against the parietal involvement as supporting a domain-general attentional mechanism and support a domain-specific buffer account of working memory.
Collapse
Affiliation(s)
- Jeremy Purcell
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, United States
- Cognitive Science Department, Johns Hopkins University, Baltimore, MD, United States
| | - Brenda Rapp
- Cognitive Science Department, Johns Hopkins University, Baltimore, MD, United States
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| |
Collapse
|