1
|
Dhar S, Bhattacharjee P. Clinical-exome sequencing unveils the genetic landscape of polycystic ovarian syndrome (PCOS) focusing on lean and obese phenotypes: implications for cost-effective diagnosis and personalized treatment. Sci Rep 2024; 14:24468. [PMID: 39424910 PMCID: PMC11489695 DOI: 10.1038/s41598-024-75719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most common endocrinopathies among reproductive women worldwide, contributing greatly on the incidence of female infertility and gynecological cancers. It is a complex health condition combining of multiple symptoms like androgen excess, uncontrolled weight gain, alopecia, hirsutism, etc. Conventionally PCOS was associated with obesity while it is often found among lean women nowadays, making the disease more critical to diagnose as well treatment. The disorder has an impact on several signal transduction pathways, including steroidogenesis, steroid hormone activity, gonadotrophin regulation, insulin secretion, energy balance, and chronic inflammation. Understanding the aetiology and pathophysiology of PCOS is difficult due to its multiple causes, which include environmental factors, intricate genetic predisposition, and epigenetic modifications. Despite research supporting the role of familial aggregations in PCOS outcomes, the inheritance pattern remains unknown. Henceforth, to reduce the burden of PCOS, it is inevitably important to diagnose at early ages as well as intervene through personalized medicine. With this brief background, it was imperative to elucidate the genetic architecture of PCOS considering BMI as an controlling factor. This study aims to investigate the genetic basis behind obesity-mediated PCOS, focusing on both obese and lean individuals. It uses a comprehensive bioinformatics methodology to depict pathways and functionality enrichment, allowing for cost-effective risk prediction and management. In the present research, the representative study participants (N = 2) were chosen from a cross-sectional epidemiological survey, based on their anthropometric parameters and confirmation of PCOS. Upon voluntary participation and written consent, biological fluids (whole blood and buccal swab) were taken from where DNA was extracted. The clinical-exome sequencing was performed by the Next-generation Illumina platform using the Twist Human Comprehensive Exome Kit. A comprehensive bioinformatics methodology was employed to identify the most important, unique, and common genes. A total of 26,550 variants were identified in clinically important exomes from two samples, with 5170 common and 2232 and 2322 unique among PCOS lean and obese phenotypes, respectively. Only 262 and 94 variants were PCOS-specific in lean and obese PCOS. Three filters were applied to shortlist the most potent variants, with 4 unique variants in lean PCOS, 2 unique variants in obese PCOS, and 5 common variants in both. The study found that leptin signalling impairment and insulin resistance, as well as mutations in CYP1A1, CYP19A1, ESR1, AR, AMH, AdipoR1, NAMPT, NPY, PTEN, EGFR, and Akt, all play significant roles in PCOS in the studied group. Young women in West Bengal, India, are more likely to have co-occurring PCOS, which includes estrogen resistance, leptin receptor insufficiency, folate deficiency, T2DM, and acanthosis nigricans, with obesity being a common phenotypic expression.
Collapse
Affiliation(s)
- Shrinjana Dhar
- Environmental Epigenomics Laboratory, Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Pritha Bhattacharjee
- Environmental Epigenomics Laboratory, Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
2
|
Pornsukjantra T, Saikachain N, Sutjarit N, Khongkrapan A, Tubsuwan A, Bhukhai K, Tim-Aroon T, Anurathapan U, Hongeng S, Asavapanumas N. An increase in ER stress and unfolded protein response in iPSCs-derived neuronal cells from neuronopathic Gaucher disease patients. Sci Rep 2024; 14:9177. [PMID: 38649404 PMCID: PMC11035702 DOI: 10.1038/s41598-024-59834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.
Collapse
Affiliation(s)
- Tanapat Pornsukjantra
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nongluk Saikachain
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Arthaporn Khongkrapan
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| |
Collapse
|
3
|
Du Y, Geng P, Chen Q, Han L, Liu L, Yang M, Tan M, Meng J, Sun X, Feng L. Associations of vitamin D receptor polymorphisms with risk of Alzheimer's disease, Parkinson's disease, and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1377058. [PMID: 38681668 PMCID: PMC11047136 DOI: 10.3389/fnagi.2024.1377058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin D is a lipid soluble steroid hormone, which plays a critical role in the calcium homeostasis, neuronal development, cellular differentiation, and growth by binding to vitamin D receptor (VDR). Associations between VDR gene polymorphism and Alzheimer's disease (AD), Parkinson's disease (PD), and mild cognitive impairment (MCI) risk has been investigated extensively, but the results remain ambiguous. The aim of this study was to comprehensively assess the correlations between four VDR polymorphisms (FokI, BsmI, TaqI, and ApaI) and susceptibility to AD, PD, and MCI. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the relationship of interest. Pooled analyses suggested that the ApaI polymorphism decreased the overall AD risk, and the TaqI increased the overall PD susceptibility. In addition, the BsmI and ApaI polymorphisms were significantly correlated with the overall MCI risk. Stratified analysis by ethnicity further showed that the TaqI and ApaI genotypes reduced the AD predisposition among Caucasians, while the TaqI polymorphism enhanced the PD risk among Asians. Intriguingly, carriers with the BB genotype significantly decreased the MCI risk in Asian descents, and the ApaI variant elevated the predisposition to MCI in Caucasians and Asians. Further studies are need to identify the role of VDR polymorphisms in AD, PD, and MCI susceptibility.
Collapse
Affiliation(s)
- Yanjun Du
- Department of Encephalopathy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Qunqun Chen
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Laixi Han
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Lu Liu
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingzhu Tan
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Jun Meng
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiaojuan Sun
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Lidan Feng
- Department of Rehabilitation, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
4
|
Aslam K, Anjum I, Aslam K, Haq R, Bashir R. Genetic susceptibility of vitamin D receptor gene polymorphisms on autosomal recessive primary microcephaly patients in Pakistani population: a case-control and in-silico study. Mol Biol Rep 2023; 50:8049-8059. [PMID: 37541996 DOI: 10.1007/s11033-023-08681-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Autosomal recessive primary microcephaly (MCPH) is a rare genetic disorder that leads to reduced cerebral cortex caused by a mutation in corticogenesis. The expression of the Vitamin D receptor (VDR) gene is involved in the proliferation and differentiation of neural stem cells, and VDR polymorphisms have been associated with various neurological disorders. However, their relationship with MCPH has not been explored. This study aimed to investigate the association of VDR polymorphisms with MCPH due to its role in Wnt signaling pathway and its In-silico analysis. METHODS Blood samples of 64 MCPH patients and 52 controls were collected to genotype VDR SNPs (TaqI (rs731236), FokI (rs2228570) and BsmI (rs1544410). In-silico tools were also used to assess the effects of exonic SNPs on mRNA and protein structure and pathogenicity of exonic and intronic SNPs. RESULTS The study found that serum 25-OH vitamin D3 levels were significantly different in MCPH patients and healthy controls (P = 0.000). The genetic analysis showed that VDR polymorphisms of FokI and BsmI were seven times more frequent in MCPH patients than in controls (P < 0.05) and the recessive model for TaqI and dominant model for BsmI polymorphisms were also associated with the pathogenesis of MCPH. In-silico analysis showed that the pathogenicity effects of rs2228570 and rs1544410 are neutral while rs731236 causes a silent mutation which has no effect on VDR protein. CONCLUSION VDR polymorphisms of FokI and BsmI are associated with the risk of MCPH. These findings suggest that VDR polymorphisms play a role in MCPH, which could provide important insights for understanding the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Komal Aslam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Kanwal Aslam
- Department of Statistics, Kinnaird College for Women, Lahore, Pakistan
| | - Rukhama Haq
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rasheeda Bashir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| |
Collapse
|
5
|
Agliardi C, Guerini FR, Bolognesi E, Zanzottera M, Clerici M. VDR Gene Single Nucleotide Polymorphisms and Autoimmunity: A Narrative Review. BIOLOGY 2023; 12:916. [PMID: 37508347 PMCID: PMC10376382 DOI: 10.3390/biology12070916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
The vitamin D/Vitamin D receptor (VDR) axis is crucial for human health as it regulates the expression of genes involved in different functions, including calcium homeostasis, energy metabolism, cell growth and differentiation, and immune responses. In particular, the vitamin D/VDR complex regulates genes of both innate and adaptive immunity. Autoimmune diseases are believed to arise from a genetic predisposition and the presence of triggers such as hormones and environmental factors. Among these, a role for Vitamin D and molecules correlated to its functions has been repeatedly suggested. Four single nucleotide polymorphisms (SNPs) of the VDR gene, ApaI, BsmI, TaqI, and FokI, in particular, have been associated with autoimmune disorders. The presence of particular VDR SNP alleles and genotypes, thus, was observed to modulate the likelihood of developing diverse autoimmune conditions, either increasing or reducing it. In this work, we will review the scientific literature suggesting a role for these different factors in the pathogenesis of autoimmune conditions and summarize evidence indicating a possible VDR SNP involvement in the onset of these diseases. A better understanding of the role of the molecular mechanisms linking Vitamin D/VDR and autoimmunity might be extremely useful in designing novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, LAMMB, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
6
|
Jennysdotter Olofsgård F, Ran C, Qin Y, Fourier C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. Investigating Vitamin D Receptor Genetic Markers in a Cluster Headache Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065950. [PMID: 36983024 PMCID: PMC10051627 DOI: 10.3390/ijms24065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Patients diagnosed with the primary headache disorder known as cluster headache (CH) commonly report that their headache attacks occur in patterns of both circadian and seasonal rhythmicity. Vitamin D is essential for a variety of bodily functions and vitamin D levels are largely regulated by daylight exposure in connection with seasonal variation. For this Sweden-based study, the association between CH and three single-nucleotide polymorphisms in the vitamin D receptor gene, rs2228570, rs1544410, and rs731236, were investigated, as well as CH bouts and trigger factors in relation to seasonal and weather changes. Over 600 study participants with CH and 600 controls were genotyped for rs2228570, and genotyping results for rs1544410 and rs731236 were obtained from a previous genome-wide association study. The genotyping results were combined in a meta-analysis, with data from a Greek study. No significant association was found between rs2228570 and CH or the CH subtype in Sweden, nor did the meta-analysis show significant results for any of the three markers. The most common period of the year to experience CH bouts in Sweden was autumn, and conditions linked to weather or weather changes were also identified as potential triggers for CH bouts for a quarter of the responders who reported bout triggers. Though we cannot rule out vitamin D involvement in CH, this study does not indicate any connection between CH and the three vitamin D receptor gene markers.
Collapse
Affiliation(s)
| | - Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yuyan Qin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carmen Fourier
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Danderyd Hospital, 182 88 Stockholm, Sweden
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
8
|
Redenšek S, Kristanc T, Blagus T, Trošt M, Dolžan V. Genetic Variability of the Vitamin D Receptor Affects Susceptibility to Parkinson’s Disease and Dopaminergic Treatment Adverse Events. Front Aging Neurosci 2022; 14:853277. [PMID: 35517045 PMCID: PMC9063754 DOI: 10.3389/fnagi.2022.853277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin D is a lipid-soluble molecule and an important transcriptional regulator in many tissues and organs, including the brain. Its role has been demonstrated also in Parkinson’s disease (PD) pathogenesis. Vitamin D receptor (VDR) is responsible for the initiation of vitamin D signaling cascade. The aim of this study was to assess the associations of VDR genetic variability with PD risk and different PD-related phenotypes. We genotyped 231 well characterized PD patients and 161 healthy blood donors for six VDR single nucleotide polymorphisms, namely rs739837, rs4516035, rs11568820, rs731236, rs2228570, and rs1544410. We observed that VDR rs2228570 is associated with PD risk (p < 0.001). Additionally, we observed associations of specific VDR genotypes with adverse events of dopaminergic treatment. VDR rs1544410 (GG vs. GA + AA: p = 0.005; GG vs. GA: p = 0.009) was associated with the occurrence of visual hallucinations and VDR rs739837 (TT vs. GG: p = 0.036), rs731236 (TT vs. TC + CC: p = 0.011; TT vs. TC: p = 0.028; TT vs. CC: p = 0.035), and rs1544410 (GG vs. GA: p = 0.014) with the occurrence of orthostatic hypotension. We believe that the reported study may support personalized approach to PD treatment, especially in terms of monitoring vitamin D level and vitamin D supplementation in patients with high risk VDR genotypes.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tilen Kristanc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Vita Dolžan,
| |
Collapse
|