1
|
Li XY, Lai H, Li X, Xu F, Song Y, Wang Z, Li Q, Lin R, Xu Z, Wang C. Genetic profiles of multiple system atrophy revealed by exome sequencing, long-read sequencing and spinocerebellar ataxia repeat expansion analysis. Eur J Neurol 2024; 31:e16441. [PMID: 39152783 DOI: 10.1111/ene.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder clinically characterized by combinations of autonomic failure, parkinsonism, cerebellar ataxia and pyramidal signs. Although a few genetic factors have been reported to contribute to the disease, its mutational profiles have not been systemically studied. METHODS To address the genetic profiles of clinically diagnosed MSA patients, exome sequencing and triplet repeat detection was conducted in 205 MSA patients, including one familial case. The pathogenicity of variants was determined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS In the familial patient, a novel heterozygous COQ2 pathogenic variant (p.Ala351Thr) was identified in the MSA pedigree. In the sporadic patients, 29 pathogenic variants were revealed in 21 genes, and the PARK7 p.Ala104Thr variant was significantly associated with MSA (p = 0.0018). Moreover, burden tests demonstrated that the pathogenic variants were enriched in cerebellar ataxia-related genes in patients. Furthermore, repeat expansion analyses revealed that two patients carried the pathogenic CAG repeat expansion in the CACNA1A gene (SCA6), one patient carried the (ACAGG)exp/(ACAGG)exp expansion in RFC1 and one carried the GAA-pure expansion in FGF14 gene. CONCLUSION In conclusion, a novel COQ2 pathogenic variant was identified in a familial MSA patient, and repeat expansions in CACNA1A, RFC1 and FGF14 gene were detected in four sporadic patients. Moreover, a PARK7 variant and the burden of pathogenic variants in cerebellar ataxia-related genes were associated with MSA.
Collapse
Affiliation(s)
- Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Xian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| | - Qibin Li
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, Guangdong, China
| | - Ruichai Lin
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, Guangdong, China
| | - Zhiheng Xu
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China
| |
Collapse
|
2
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Lopriore P, Vista M, Tessa A, Giuntini M, Caldarazzo Ienco E, Mancuso M, Siciliano G, Santorelli FM, Orsucci D. Primary Coenzyme Q10 Deficiency-Related Ataxias. J Clin Med 2024; 13:2391. [PMID: 38673663 PMCID: PMC11050807 DOI: 10.3390/jcm13082391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar dysfunction, including abnormal eye movements, dysmetria, kinetic tremor, dysarthria, and/or dysphagia. Among the so-termed mitochondrial ataxias, variants in genes encoding steps of the coenzyme Q10 biosynthetic pathway represent a common cause of autosomal recessive primary coenzyme Q10 deficiencies (PCoQD)s. PCoQD is a potentially treatable condition; therefore, a correct and timely diagnosis is essential. After a brief presentation of the illustrative case of an Italian woman with this condition (due to a novel homozygous nonsense mutation in COQ8A), this article will review ataxias due to PCoQD.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Alessandra Tessa
- Molecular Medicine, IRCCS Stella Maris Foundation, 56122 Pisa, Italy; (A.T.); (F.M.S.)
| | - Martina Giuntini
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Elena Caldarazzo Ienco
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | | | - Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| |
Collapse
|
4
|
Sun Z, Gao Z, Xiang M, Feng Y, Wang J, Xu J, Wang Y, Liang J. Comprehensive analysis of lactate-related gene profiles and immune characteristics in lupus nephritis. Front Immunol 2024; 15:1329009. [PMID: 38455045 PMCID: PMC10917958 DOI: 10.3389/fimmu.2024.1329009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Objectives The most frequent cause of kidney damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor for morbidity and mortality. Lactate metabolism and protein lactylation might be related to the development of LN. However, there is still a lack of relative research to prove the hypothesis. Hence, this study was conducted to screen the lactate-related biomarkers for LN and analyze the underlying mechanism. Methods To identify differentially expressed genes (DEGs) in the training set (GSE32591, GSE127797), we conducted a differential expression analysis (LN samples versus normal samples). Then, module genes were mined using WGCNA concerning LN. The overlapping of DEGs, critical module genes, and lactate-related genes (LRGs) was used to create the lactate-related differentially expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and expression levels, biomarkers were discovered. We also carried out an immune infiltration study based on biomarkers and GSEA. Results A sum of 1259 DEGs was obtained between LN and normal groups. Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were screened out by the intersection of DEGs, key module genes, and LRGs. Moreover, 8 pivotal genes were acquired via two machine-learning algorithms. Subsequently, 3 biomarkers related to lactate metabolism were obtained, including COQ2, COQ4, and NDUFV1. And these three biomarkers were enriched in pathways 'antigen processing and presentation' and 'NOD-like receptor signaling pathway'. We found that Macrophages M0 and T cells regulatory (Tregs) were associated with these three biomarkers as well. Conclusion Overall, the results indicated that lactate-related biomarkers COQ2, COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation for the diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zhan Sun
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Widyarti S, Wibowo S, Sabarudin A, Abhirama I, Sumitro SB. Dysfunctional energy and future perspective of low dose H 2O 2 as protective agent in neurodegenerative disease. Heliyon 2023; 9:e18123. [PMID: 37519743 PMCID: PMC10372669 DOI: 10.1016/j.heliyon.2023.e18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
The number of people with neurodegenerative disease continues to increase every year. A new perspective is needed to overcome this disease. In this review, researchers collected information about dysfunctional energy in neurodegenerative diseases driven by mitochondria. Mitochondrial dysregulation can cause damage to the neuron system. The increase in the amount and interaction of α-synuclein with SAMM50 and GABARAPL1 in the mitochondria is one of the factors causing neurodegenerative disease. As an energy provider in the body, the existence of harmonization in the regulation of mitochondria, specifically the mitochondrial outer membrane, is important. Low-dose hydrogen peroxide (H2O2) has neuroprotective abilities to overcome the impairment function of mitochondria in neurodegenerative patients. Based on computational simulation of this case, it can be used as a basic concept for the development of the role of H2O2 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sri Widyarti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Syahputra Wibowo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
- Postdoctoral Fellow, Faculty of Biology, Gadjah Mada University, Teknika Selatan Sekip Utara, 55281 Yogyakarta, Indonesia
| | - Akhmad Sabarudin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Intan Abhirama
- Department of Neurology, Bogor Senior Hospital, Jl.Raya Tajur 16137, West Java, Indonesia
| | - Sutiman Bambang Sumitro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| |
Collapse
|
6
|
Nakahara Y, Mitsui J, Date H, Porto KJ, Hayashi Y, Yamashita A, Kusakabe Y, Matsukawa T, Ishiura H, Yasuda T, Iwata A, Goto J, Ichikawa Y, Momose Y, Takahashi Y, Toda T, Ohta R, Yoshimura J, Morishita S, Gustavsson EK, Christy D, Maczis M, Farrer MJ, Kim HJ, Park SS, Jeon B, Zhang J, Gu W, Scholz SW, Singleton AB, Houlden H, Yabe I, Sasaki H, Matsushima M, Takashima H, Kikuchi A, Aoki M, Hara K, Kakita A, Yamada M, Takahashi H, Onodera O, Nishizawa M, Watanabe H, Ito M, Sobue G, Ishikawa K, Mizusawa H, Kanai K, Kuwabara S, Arai K, Koyano S, Kuroiwa Y, Hasegawa K, Yuasa T, Yasui K, Nakashima K, Ito H, Izumi Y, Kaji R, Kato T, Kusunoki S, Osaki Y, Horiuchi M, Yamamoto K, Shimada M, Miyagawa T, Kawai Y, Nishida N, Tokunaga K, Dürr A, Brice A, Filla A, Klockgether T, Wüllner U, Tanner CM, Kukull WA, Lee VMY, Masliah E, Low PA, Sandroni P, Ozelius L, Foroud T, Tsuji S. Genome-wide association study identifies a new susceptibility locus in PLA2G4C for Multiple System Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289328. [PMID: 37425910 PMCID: PMC10327266 DOI: 10.1101/2023.05.02.23289328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
To elucidate the molecular basis of multiple system atrophy (MSA), a neurodegenerative disease, we conducted a genome-wide association study (GWAS) in a Japanese MSA case/control series followed by replication studies in Japanese, Korean, Chinese, European and North American samples. In the GWAS stage rs2303744 on chromosome 19 showed a suggestive association ( P = 6.5 × 10 -7 ) that was replicated in additional Japanese samples ( P = 2.9 × 10 -6 . OR = 1.58; 95% confidence interval, 1.30 to 1.91), and then confirmed as highly significant in a meta-analysis of East Asian population data ( P = 5.0 × 10 -15 . Odds ratio= 1.49; 95% CI 1.35 to 1.72). The association of rs2303744 with MSA remained significant in combined European/North American samples ( P =0.023. Odds ratio=1.14; 95% CI 1.02 to 1.28) despite allele frequencies being quite different between these populations. rs2303744 leads to an amino acid substitution in PLA2G4C that encodes the cPLA2γ lysophospholipase/transacylase. The cPLA2γ-Ile143 isoform encoded by the MSA risk allele has significantly decreased transacylase activity compared with the alternate cPLA2γ-Val143 isoform that may perturb membrane phospholipids and α-synuclein biology.
Collapse
|
7
|
Mitsui J, Matsukawa T, Uemura Y, Kawahara T, Chikada A, Porto KJL, Naruse H, Tanaka M, Ishiura H, Toda T, Kuzuyama H, Hirano M, Wada I, Ga T, Moritoyo T, Takahashi Y, Mizusawa H, Ishikawa K, Yokota T, Kuwabara S, Sawamoto N, Takahashi R, Abe K, Ishihara T, Onodera O, Matsuse D, Yamasaki R, Kira JI, Katsuno M, Hanajima R, Ogata K, Takashima H, Matsushima M, Yabe I, Sasaki H, Tsuji S. High-dose ubiquinol supplementation in multiple-system atrophy: a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. EClinicalMedicine 2023; 59:101920. [PMID: 37256098 PMCID: PMC10225719 DOI: 10.1016/j.eclinm.2023.101920] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023] Open
Abstract
Background Functionally impaired variants of COQ2, encoding an enzyme in biosynthesis of coenzyme Q10 (CoQ10), were found in familial multiple system atrophy (MSA) and V393A in COQ2 is associated with sporadic MSA. Furthermore, reduced levels of CoQ10 have been demonstrated in MSA patients. Methods This study was a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. Patients with MSA were randomly assigned (1:1) to either ubiquinol (1500 mg/day) or placebo. The primary efficacy outcome was the change in the unified multiple system atrophy rating scale (UMSARS) part 2 at 48 weeks. Efficacy was assessed in all patients who completed at least one efficacy assessment (full analysis set). Safety analyses included patients who completed at least one dose of investigational drug. This trial is registered with UMIN-CTR (UMIN000031771), where the drug name of MSA-01 was used to designate ubiquinol. Findings Between June 26, 2018, and May 27, 2019, 139 patients were enrolled and randomly assigned to the ubiquinol group (n = 69) or the placebo group (n = 70). A total of 131 patients were included in the full analysis set (63 in the ubiquinol group; 68 in the placebo group). This study met the primary efficacy outcome (least square mean difference in UMSARS part 2 score (-1.7 [95% CI, -3.2 to -0.2]; P = 0.023)). The ubiquinol group also showed better secondary efficacy outcomes (Barthel index, Scale for the Assessment and Rating of Ataxia, and time required to walk 10 m). Rates of adverse events potentially related to the investigational drug were comparable between ubiquinol (n = 15 [23.8%]) and placebo (n = 21 [30.9%]). Interpretation High-dose ubiquinol was well-tolerated and led to a significantly smaller decline of UMSARS part 2 score compared with placebo. Funding Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Uemura
- Department of Data Sciences, Biostatistics Section, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kristine Joyce L. Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Tanaka
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruko Kuzuyama
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Mari Hirano
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ikue Wada
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshio Ga
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takashi Moritoyo
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsuhisa Ogata
- Department of Neurology, National Hospital Organization Higashisaitama National Hospital, Hasuda, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masaaki Matsushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
8
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
9
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
10
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
11
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
12
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
13
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
14
|
Fanciulli A, Leys F, Lehner F, Sidoroff V, Ruf VC, Raccagni C, Mahlknecht P, Kuipers DJS, van IJcken WFJ, Stockner H, Musacchio T, Volkmann J, Monoranu CM, Stankovic I, Breedveld G, Ferraro F, Fevga C, Windl O, Herms J, Kiechl S, Poewe W, Seppi K, Stefanova N, Scholz SW, Bonifati V, Wenning GK. A multiplex pedigree with pathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Brain Commun 2022; 4:fcac175. [PMID: 35855480 PMCID: PMC9291376 DOI: 10.1093/braincomms/fcac175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023] Open
Abstract
Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion’s tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson’s disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson’s disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson’s disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson’s disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson’s disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson’s disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.
Collapse
Affiliation(s)
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne Lehner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Heike Stockner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Musacchio
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Guido Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|