1
|
Liu B, Tian H, Momeni MR. The interplay of exercise and green tea: a new road in cancer therapy. Cancer Cell Int 2025; 25:6. [PMID: 39773739 PMCID: PMC11705833 DOI: 10.1186/s12935-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away. An unevenness in the levels of free radicals and the body's antioxidant defenses, made up of enzyme and non-enzyme antioxidants, results in oxidative pressure. Generally, an imbalance in the levels of oxidative stress triggers the creation of harmful reactive oxygen or nitrogen compounds, causing the development or progression of numerous ailments, including cancer. The equilibrium between pro-oxidant and antioxidant substances is a direct indicator of this imbalance. Green tea and its derivatives are rich sources of bioactive substances such as flavonoids and polyphenols which possess antioxidant abilities. Moreover, modulation of epigenetic targets as well as inflammatory pathways including ERK1/2 and NF-κB are other proposed mechanisms for its antioxidant activity. Recent studies demonstrate the promise of green tea as an antioxidant, showing its ability to decrease the likelihood of developing cancer by impacting actions like cell growth, blood vessel formation, and spread of cancer cells. This summary will concentrate on the complex network of different pathways related to physical activity and consumption of green tea. In particular, the focus of this research will be on examining how oxidative stress contributes to health and investigating the potential antioxidant properties of green tea, and the interconnected relationship between exercise and green tea in the treatment of cancer. Elucidation of these different pathways would help scientists for development of better therapeutic targets and further increase of current anticancer agents efficiency.
Collapse
Affiliation(s)
- Bing Liu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Heyu Tian
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | | |
Collapse
|
2
|
Ding Y, Li H, Cao S, Yu Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2024; 490:117036. [PMID: 39009138 DOI: 10.1016/j.taap.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Saisai Cao
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
3
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
4
|
Li Z, Feng C, Dong H, Jin W, Zhang W, Zhan J, Wang S. Health promoting activities and corresponding mechanism of (–)-epicatechin-3-gallate. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Luo T, Jiang JG. Anticancer Effects and Molecular Target of Theaflavins from Black Tea Fermentation in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15052-15065. [PMID: 34878780 DOI: 10.1021/acs.jafc.1c05313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black tea is one of the most popular beverages in the world, and numerous epidemiological studies have shown that drinking black tea is good for health. As a natural tea pigment formed during the fermentation of black tea, the content of theaflavins accounts for only 2-6% of the dry weight of black tea, but they have a great impact on the color and taste of black tea soup. Recently, a large number of studies have shown that theaflavins have a significant anticancer effect. In this Perspective, we first state the physical and chemical properties, separation and purification methods, and biological formation pathways of theaflavins and analyze their safety and oral bioavailability and the structure-activity relationship of their antioxidant and anticancer activities; then, we describe in detail their anticancer effect in vitro and in vivo and highlight their various molecular targets involved in cancer inhibition. The anticancer molecular targets of theaflavins are mainly cell-cycle regulatory proteins, apoptosis-related proteins, cell-migration-related proteins, and growth transcription factors. Finally, the possibility of developing new health-care food based on theaflavins is discussed. This Perspective is expected to provide a theoretical basis for the anticancer application of theaflavins in the future.
Collapse
Affiliation(s)
- Ting Luo
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021; 12:710304. [PMID: 34744708 PMCID: PMC8565650 DOI: 10.3389/fphar.2021.710304] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Polyphenols constitute an important group of natural products that are traditionally associated with a wide range of bioactivities. These are usually found in low concentrations in natural products and are now available in nutraceuticals or dietary supplements. A group of polyphenols that include apigenin, quercetin, curcumin, resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways that are central for cancer development, progression, and metastasis. Here, we describe novel mechanistic insights on the effect of this group of polyphenols on key elements of the signaling pathways impacting cancer. We describe the protein modifications induced by these polyphenols and their effect on the central elements of several signaling pathways including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53 gene expression and protein levels and posttranslational modifications such as phosphorylation, acetylation, and ubiquitination that influence stability, subcellular location, activation of new transcriptional targets, and the role of p53 in response to DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus, deep understanding of the effects that polyphenols have on these key players in cancer-driving signaling pathways will certainly lead to better designed targeted therapies, with less toxicity for cancer treatment. The scope of this review centers on the regulation of key elements of cancer signaling pathways by the most studied polyphenols and highlights the importance of a profound understanding of these regulations in order to improve cancer treatment and control with natural products.
Collapse
Affiliation(s)
- Manuel Humberto Cháirez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
7
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
|
9
|
Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Shirakami Y, Shimizu M. Possible Mechanisms of Green Tea and Its Constituents against Cancer. Molecules 2018; 23:molecules23092284. [PMID: 30205425 PMCID: PMC6225266 DOI: 10.3390/molecules23092284] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
A number of epidemiological, clinical, and experimental researches have indicated that administration of green tea appears to have anti-cancer activity. According to findings of laboratory cell culture studies, a diverse mechanism has been observed underlying the effects of green tea catechins against cancer. These mechanisms include anti-oxidant activity, cell cycle regulation, receptor tyrosine kinase pathway inhibition, immune system modulation, and epigenetic modification control. This review discusses the results of these studies to provide more insight into the effects of green tea administration on cancers observed to date in this research field.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
11
|
Pal D, Sur S, Roy R, Mandal S, Kumar Panda C. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. J Cell Physiol 2018; 234:825-836. [PMID: 30078217 DOI: 10.1002/jcp.26900] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/13/2018] [Indexed: 01/07/2023]
Abstract
In this study, antitumor activity of epigallocatechin gallate (EGCG; major component of green tea polyphenol), eugenol (active component of clove), and amarogentin (active component of chirata plant) either alone or in combination were evaluated in Hela cell line. It was evident that EGCG with eugenol-amrogentin could highly inhibit the cellular proliferation and colony formation than individual treatments. Induction of apoptosis was also higher after treatment with EGCG in combination with eugenol-amrogentin than individual compound treatments. The antiproliferative effect of these compounds was due to downregulation of cyclinD1 and upregulation of cell cycle inhibitors LIMD1, RBSP3, and p16 at G1/S phase of cell cycle. Treatment of these compounds could induce promoter hypomethylation of LimD1 and P16 genes as a result of reduced expression of DNA methyltransferase 1 (DNMT1). Thus, our study indicated the better chemotherapeutic effect of EGCG in combination with eugenol-amarogentin in Hela cell line. The chemotherapeutic effect might be due to the epigenetic modification particularly DNA hypomethylation through downregulation of DNMT1.
Collapse
Affiliation(s)
- Debolina Pal
- Department of Oncogene Regulation, Chittarangan National Cancer Institute, Kolkata, India
| | - Subhayan Sur
- Department of Oncogene Regulation, Chittarangan National Cancer Institute, Kolkata, India
| | - Rituparna Roy
- Department of Oncogene Regulation, Chittarangan National Cancer Institute, Kolkata, India
| | - Suvra Mandal
- Department of Chemistry, National Research Institute for Ayurvedic Drug Development, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittarangan National Cancer Institute, Kolkata, India
| |
Collapse
|
12
|
Ke S, Liu Q, Yao Y, Zhang X, Sui G. An in vitro cytotoxicities comparison of 16 priority polycyclic aromatic hydrocarbons in human pulmonary alveolar epithelial cells HPAEpiC. Toxicol Lett 2018. [PMID: 29526570 DOI: 10.1016/j.toxlet.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In present study, we compared for the first time the cytotoxicities of the 16 priority polycyclic aromatic hydrocarbons (PAHs) in human pulmonary alveolar epithelial cells HPAEpiC. Moreover, we examined the effects of each PAH on oxidative stress (SOD, GSH, and ROS), cell viability, extracellular LDH, and apoptosis. The 16 priority PAHs were classified into four levels of cytotoxicity: (1) high cytotoxicity, BkF, BaP, and DBA; (2) moderate cytotoxicity, BbF, IND, BghiP, BaA, and CHR; (3) low cytotoxicity, PA, FL, and Pyr; and (4) mild cytotoxicity, Nap, AcPy, Acp, Flu, and Ant. Most of the PAHs showed benzene-ring-related cytotoxicity, except PA with 3-ring structure, cytotoxicity of which is similar to those of FL and Pyr with 4-ring structure. Results indicated the need for more studies on DBA, IND, and BghiP, among others, which are rarely investigated. PA, FL, and Pyr with little carcinogenicity should also be evaluated. This study will provide useful references for studies on the effects of PAHs on different cells or animal models.
Collapse
Affiliation(s)
- Shaorui Ke
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044 PR China.
| |
Collapse
|
13
|
Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols. Nutrition 2017; 43-44:8-15. [DOI: 10.1016/j.nut.2017.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
|
14
|
He HF. Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr Res 2017; 61:1344521. [PMID: 28747864 PMCID: PMC5510227 DOI: 10.1080/16546628.2017.1344521] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Theaflavins (TFs) are a category of natural compounds characterized with the benzotropolone skeleton. The prominent benefits of TFs have been well documented. Amount of research were conducted and excellent achievements were disclosed during the past years. However, as far as we know, there is no comprehensive review about TFs. Scope and approach: This review summarized the recent research progress. The activity of TFs on anti-oxidation, anti-mutagenicity, hypolipidemic, anti-inflammatory, anti-cancer, anti-viral effect as well as the epidemiological cure were sorted. Converging pioneer literature and deduction, the underlying formation mechanism of TFs was proposed. Subsequently, acquisition of TFs was pointed out to be the fundament for further research. Accelerated by enzyme, bio-synthesis of TFs were reviewed simultaneously. At the end, employing modern analysis instrument and technology, isolations of TFs were enumerated. Key findings and conclusions: Structure of the skeleton as well as functional groups were paramount related with the bio-activity of TFs. Meanwhile, oxidation pathway of two catechin molecules to form TFs were hypothesized. Also, ascertainment of the several therapeutic efficiency of the family members of TFs would be the next step in the future.
Collapse
Affiliation(s)
- Hua-Feng He
- Key Laboratory of Tea Processing Engineering of Zhejiang Province, Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
- National Engineering Technology Research Center for Tea Industry, HangZhou, China
| |
Collapse
|
15
|
Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA, Micol V, Bergquist J, Cifuentes A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 2017; 1499:90-100. [PMID: 28389096 DOI: 10.1016/j.chroma.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Verónica Ruiz-Torres
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Vicente Micol
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol Appl Pharmacol 2016; 300:34-46. [PMID: 27058323 DOI: 10.1016/j.taap.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30thweeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30thweek. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF.
Collapse
|
17
|
Sur S, Pal D, Mandal S, Roy A, Panda CK. Tea polyphenols epigallocatechin gallete and theaflavin restrict mouse liver carcinogenesis through modulation of self-renewal Wnt and hedgehog pathways. J Nutr Biochem 2015; 27:32-42. [PMID: 26386739 DOI: 10.1016/j.jnutbio.2015.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/14/2023]
Abstract
The aim of this study is to evaluate chemopreventive and therapeutic efficacy of tea polyphenols epigallocatechin gallete (EGCG) and theaflavin (TF) on self-renewal Wnt and Hedgehog (Hh) pathways during CCl4/N-nitosodiethylamine-induced mouse liver carcinogenesis. For this purpose, the effect of EGCG/TF was investigated in liver lesions of different groups at pre-, continuous and post initiation stages of carcinogenesis. Comparatively increased body weights were evident due to EGCG/TF treatment than carcinogen control mice. Both EGCG and TF could restrict the development of hepatocellular carcinoma at 30th week of carcinogen application showing potential chemoprevention in continuous treated group (mild dysplasia) followed by pretreated (moderate dysplasia) and therapeutic efficacy in posttreated group (mild dysplasia). This restriction was associated with significantly reduced proliferation, increased apoptosis, decreased prevalence of hepatocyte progenitor cell (AFP) and stem cell population (CD44) irrespective of EGCG/TF treatments. The EGCG/TF could modulate the Wnt pathway by reducing β-catenin and phospho-β-catenin-Y-654 expressions along with up-regulation of sFRP1 (secreted frizzled-related protein 1) and adenomatosis polyposis coli during the restriction. In case of the Hh pathway, EGCG/TF could also reduce expressions of glioma-associated oncogene homolog 1 (Gli1) and SMO (smoothened homolog) along with up-regulation of PTCH1 (patched homolog 1). As a result, in Wnt/Hh regulatory pathways decreased expressions of β-catenin/Gli1 target genes like CyclinD1, cMyc and EGFR/phospho-EGFR-Y-1173 and up-regulation of E-cadherin were seen during the restriction. Thus, the restriction of liver carcinogenesis by EGCG/TF was due to reduction in hepatocyte progenitor cell/stem cell population along with modulation of Wnt/Hh and other regulatory pathways.
Collapse
Affiliation(s)
- Subhayan Sur
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| | - Debolina Pal
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anup Roy
- North Bengal Medical College and Hospital, West Bengal, India
| | - Chinmay Kumar Panda
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
18
|
Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R. Benzo(a)pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention. Pharmacol Rep 2015; 67:996-1009. [PMID: 26398396 DOI: 10.1016/j.pharep.2015.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
Lung cancer is the major cause of overall cancer deaths, and chemoprevention is a promising strategy to control this disease. Benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is one among the principal constituents of tobacco smoke that plays a key role in lung carcinogenesis. The B(a)P induced lung cancer in mice offers a relevant model to study the effect of natural products and has been widely used by many researchers and found considerable success in ameliorating the pathophysiological changes of lung cancer. Currently available synthetic drugs that constitute the pharmacological armamentarium are themselves effective in managing the condition but not without setbacks. These hunches have accelerated the requisite for natural products, which may be used as dietary supplement to prevent the progress of lung cancer. Besides, these agents also supplement the conventional treatment and offer better management of the condition with less side effects. In the context of soaring interest toward dietary phytochemicals as newer pharmacological interventions for lung cancer, in the present review, we are attempting to give a silhouette of mechanisms of B(a)P induced lung carcinogenesis and the role of dietary phytochemicals in chemoprevention.
Collapse
Affiliation(s)
- Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
19
|
Lin W, Tongyi S. Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumour Biol 2014; 35:8065-75. [PMID: 24839007 DOI: 10.1007/s13277-014-2064-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Green tea polyphenol (GTP) is one of the most promising chemopreventive agent for cancer; it can inhibit cancer cell proliferation and induce apoptosis through p53-dependent cell signaling pathways. Unfortunately, many tumor cells lack the functional p53, and little is known about the effect of GTP on the p53-deficient/mutant cancer cells. To understand the p53-independent mechanisms in GTP-treated p53-dificient/mutant cancer cells, we have now examined GTP-induced cytotoxicity in human hepatoma Hep3B cells (p53-deficient). The results showed that GTP could induce Bax and Bak activation, cytochrome c release, caspase activation, and necroptosis of Hep3B cells. Bax and Bak, two key molecules of mitochondrial permeability transition pore (MPTP), were interdependently activated by GTP, with translocation and homo-oligomerization on the mitochondria. Bax and Bak induce cytochrome c release. Importantly, cytochrome c release and necroptosis were diminished in Hep3B cells (Bax(-/-)) and Hep3B cells (Bak(-/-)). Furthermore, overexpression of Bcl-2 could ameliorate GTP-induced cytochrome c release and necroptosis. Together, the findings suggested that GTP-induced necroptosis was modulated by the p53-independent pathway, which was related to the translocation of Bax and Bak to mitochondria, release of cytochrome c, and activation of caspases.
Collapse
Affiliation(s)
- Weiping Lin
- School of Pharmacy and Bioscience, Weifang Medical University, Weifang, 261000, Shandong Province, China,
| | | |
Collapse
|
20
|
Cordero-Herrera I, Martín MA, Bravo L, Goya L, Ramos S. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells. Nutr Cancer 2014; 65:718-28. [PMID: 23859040 DOI: 10.1080/01635581.2013.795981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tea flavonoid epicatechin gallate (ECG) exhibits a wide range of biological activities. In this study, the in vitro anticancer effects of ECG on SW480 colon cancer cell line was investigated by analyzing the cell cycle, apoptosis, key proteins involved in cellular survival/proliferation, namely AKT/phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinases (MAPKs), and the role of p53 in these processes. ECG induced cell cycle arrest at the G0/G1-S phase border associated with the stimulation of p21, p-p53, and p53 and the suppression of cyclins D1 and B1. Exposure of SW480 cells to ECG also led to apoptosis as determined by time-dependent changes in caspase-3 activity, MAPKs [extracellular regulated kinase (ERK), p38, and c-jun amino-terminal kinase (JNK)], p21 and p53 activation, and AKT inhibition. The presence of pifithrin, an inhibitor of p53 function, blocked ECG-induced apoptosis as was manifested by restored cell viability and caspase-3 activity to control values and reestablished the balance among Bcl-2 anti- and proapoptotic protein levels. Interestingly, ECG also inhibited p53 protein and RNA degradation, contributing to the stabilization of p53. In addition, JNK and p38 have been identified as necessary for ECG-induced apoptosis, upon activation by p53. The results suggest that the activation of the p53-p38/JNK cascade is required for ECG-induced cell death in SW480 cells.
Collapse
Affiliation(s)
- Isabel Cordero-Herrera
- Department of Metabolism and Nutrition, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Tabrez S, Priyadarshini M, Urooj M, Shakil S, Ashraf GM, Khan MS, Kamal MA, Alam Q, Jabir NR, Abuzenadah AM, Chaudhary AGA, Damanhouri GA. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:67-98. [PMID: 23534395 DOI: 10.1080/10590501.2013.763577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Today cancer is a leading cause of death among the developed countries. Its highly complex nature makes it difficult to understand as it entails multiple cellular physiological systems such as cell signaling and apoptosis. The biggest challenges faced by cancer chemoprevention/chemotherapy is maintaining drug circulation and avoiding multidrug resistance. Overall there is modest evidence regarding the protective effects of nutrients from supplements against a number of cancers. Numerous scientific literatures available advocate the use of polyphenols for chemoprevention. Some groups have also suggested use of combination of nutrients in cancer prevention. However, we have yet to obtain the desired results in the line of cancer chemotherapy research. Nanotechnology can play a pivotal role in cancer treatment and prevention. Moreover, nanoparticles can be modified in various ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease the chances of multidrug resistance. In this communication, we will cover the use of various polyphenols and nutrients in cancer chemoprevention. The application of nanotechnology in this regard will also be included. In view of available reports on the potential of nanoparticles, we suggest their usage along with different combination of nutrients as cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Forester SC, Choy YY, Waterhouse AL, Oteiza PI. The anthocyanin metabolites gallic acid, 3-O
-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinog 2012; 53:432-9. [DOI: 10.1002/mc.21974] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah C. Forester
- Department of Viticulture and Enology; One Shields Avenue; University of California; Davis
| | - Ying Y. Choy
- Department of Viticulture and Enology; One Shields Avenue; University of California; Davis
| | - Andrew L. Waterhouse
- Department of Viticulture and Enology; One Shields Avenue; University of California; Davis
| | - Patricia I. Oteiza
- Departments of Nutrition and Environmental Toxicology; One Shields Avenue; University of California; Davis
| |
Collapse
|
23
|
Lee AH, Su D, Pasalich M, Binns CW. Tea consumption reduces ovarian cancer risk. Cancer Epidemiol 2012; 37:54-9. [PMID: 23107758 DOI: 10.1016/j.canep.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To ascertain the relationship between tea drinking and the risk of ovarian cancer among southern Chinese women, a case-control study was conducted in southern China during 2006-2008. METHODS Five hundred incident patients with histologically confirmed epithelial carcinoma of the ovary and 500 controls (mean age 59 years) were recruited from four public hospitals in Guangzhou. Information on frequency, quantity and duration of tea drinking, amount of dried tea leaves brewed, together with habitual diet and lifestyle characteristics, was obtained face-to-face from participants using a validated and reliable questionnaire. Logistic regression analyses were performed to assess the association between tea consumption variables and the ovarian cancer risk. RESULTS The control subjects reported higher tea consumption levels and prevalence (78.8%) than the ovarian cancer patients (51.4%). Regular drinking of green tea, black tea and/or oolong tea was associated with a lower risk of ovarian cancer, the adjusted odds ratio being 0.29 (95% confidence interval 0.22-0.39) after accounting for confounding factors. When compared with non-drinkers, apparent inverse dose-response relationships were observed for years of drinking, number of cups and quantity of tea consumed, as well as amount of dried tea leaves brewed (p < 0.01). CONCLUSION Regular tea consumption is associated with a reduced risk of ovarian cancer for southern Chinese women.
Collapse
Affiliation(s)
- Andy H Lee
- School of Public Health, Curtin University, Perth, WA, Australia.
| | | | | | | |
Collapse
|
24
|
Pal D, Sur S, Mandal S, Das S, Panda CK. Regular black tea habit could reduce tobacco associated ROS generation and DNA damage in oral mucosa of normal population. Food Chem Toxicol 2012; 50:2996-3003. [PMID: 22705326 DOI: 10.1016/j.fct.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/17/2012] [Accepted: 06/03/2012] [Indexed: 01/28/2023]
Abstract
Tobacco and tea habit are very common in world wide. In the present study, an attempt was made to evaluate the effect of regular drinking of black tea on reactive oxygen species (ROS) generation and DNA damage in buccal cells of normal subjects with or without tobacco habit. Expression of ROS associated proteins IκB, NF-κB as well as DNA repair associated proteins p53, MLH1 were also analyzed. Exfoliated buccal cells were collected from 308 healthy individuals and classified according to age, tobacco and tea habits. In all age groups, comparatively high ROS level and significantly high DNA damage frequency were seen in individuals with tobacco habit than the subjects without tea and tobacco habits. Tea habit effectively lowered ROS level and restrict DNA damage in tobacco users irrespective of ages. The DNA damage seen in the subjects was not associated with apoptosis. Moreover, tea habit effectively lowered the expression of IκB, NF-κB, p53 and MLH1 in tobacco users in all age groups. It seems that regular black tea habit could have anti-genotoxic effect as revealed by reduced tobacco associated ROS generation and DNA damage in buccal cells.
Collapse
Affiliation(s)
- Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | | | | | | | | |
Collapse
|
25
|
Valdés A, Simó C, Ibáñez C, Rocamora-Reverte L, Ferragut JA, García-Cañas V, Cifuentes A. Effect of dietary polyphenols on K562 leukemia cells: A Foodomics approach. Electrophoresis 2012; 33:2314-27. [DOI: 10.1002/elps.201200133] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Clara Ibáñez
- Laboratory of Foodomics; CIAL (CSIC); Madrid; Spain
| | - Lourdes Rocamora-Reverte
- Institute of Molecular and Cellular Biology; Miguel Hernández University; Elche, Alicante; Spain
| | - José Antonio Ferragut
- Institute of Molecular and Cellular Biology; Miguel Hernández University; Elche, Alicante; Spain
| | | | | |
Collapse
|
26
|
Zhong Z, Dong Z, Yang L, Chen X, Gong Z. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp Ther Med 2012; 4:267-272. [PMID: 22970031 DOI: 10.3892/etm.2012.580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/08/2012] [Indexed: 01/15/2023] Open
Abstract
Green tea catechins are known to function as anticancer agents via inhibition of carcinogenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed, yet the precise mechanism of lung cancer prevention by green tea catechins remains unclear. microRNAs (miRs) are a class of 21-24 nucleotide small non-coding RNAs and play critical roles throughout cellular development and regulation. Emerging evidence demonstrates that tea catechins influence the expression of miRs in human cancer cells to inhibit tumorigenesis. Both let-7a-1 and let-7g were detected in the human lung cancer cells treated with tea catechins. The cell viability and cell cycle were analyzed after tea catechins treatment. In the present study, we found that tea catechins upregulated the tumor-suppressor miRs, let-7a-1 and let-7g, in lung cancer cell lines. The upregulation of let-7a/7g repressed the expression of their targets, C-MYC and the regulatory protein of LIN-28, at the mRNA and protein levels. Moreover, the cell growth assay indicated that tea catechins significantly inhibited cell proliferation, and the flow cytometric analysis revealed an increase in the number of cells in the G2/M phase and a decrease in the number of cells in the S phase after treatment with tea catechins. These observations suggest that green tea catechins mediate the inhibition of proliferation of lung cancer cells through the let-7 signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Zhong
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211
| | | | | | | | | |
Collapse
|
27
|
Fritz H, Seely D, Kennedy DA, Fernandes R, Cooley K, Fergusson D. Green Tea and Lung Cancer. Integr Cancer Ther 2012; 12:7-24. [DOI: 10.1177/1534735412442378] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Green tea is a beverage widely used by lung cancer patients and the public for its purported anticancer properties. The authors conducted a systematic review of green tea for the treatment and prevention of lung cancer. Methodology: Six electronic databases were searched from inception until November 2011 for human interventional and preclinical evidence pertaining to the safety and efficacy of green tea for lung cancer. Results: A total of 84 articles met inclusion criteria: two Phase I trials, three reports of one surrogate study, and 79 preclinical studies. There is a lack of controlled trials investigating green tea for lung cancer. Two Phase I studies showed no objective tumor responses at the maximum tolerated dose, ranging from 3 to 4.2 g/m2 green tea extract (GTE) per day. Four cups of green tea daily decreased DNA damage (8OH-dG) in smokers. Human studies indicate that 800mg of green tea catechins daily does not alter activity of the CYP2D6, CYP1A2, CYP3A4 and CYP2C9 enzymes, however in vitro evidence suggests that green tea may bind to and reduce the effectiveness of bortezomib. Green tea applied topically may improve the healing time of radiation burns. Conclusions: Although some evidence suggests that chemopreventative benefits can be accrued from green tea, there is currently insufficient evidence to support green tea as a treatment or preventative agent for lung cancer. Green tea should not be used by patients on bortezomib therapy. Further research is warranted to explore this natural agent for lung cancer treatment and prevention.
Collapse
Affiliation(s)
- Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Integrative Cancer Center, Ottawa, ON, Canada
| | - Deborah A. Kennedy
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
- The University of Toronto, Toronto, ON, Canada
| | - Rochelle Fernandes
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
- The University of Toronto, Toronto, ON, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
- The University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Hu B, Ting Y, Zeng X, Huang Q. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr Polym 2012; 89:362-70. [PMID: 24750731 DOI: 10.1016/j.carbpol.2012.03.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 12/25/2022]
Abstract
Epigallocatechin gallate (EGCG) was successfully encapsulated in novel nanocomplexes assembled from bioactive peptides, caseinophosphopeptides (CPPs), and chitosan (CS), a natural cationic polymer. Their particle sizes and surface charges were determined to be in the range of 150.0±4.3 nm and 32.2±3.3 mV respectively. Crosslinking between the -NH3+ groups of CS with the -P=O- and -COO- groups of CPP, as well as the hydrogen bonding were confirmed from the FTIR results. Atomic force microscopy (AFM) images showed that EGCG loaded CS-CPP nanocomplexes were spherical in shape. Maintaining the surface charge as high as +32.2 mV, crosslinking CS with peptides reduced the cytotoxicity of CS nanoparticles. In addition, cellular internalization of EGCG-loaded CS-CPP nanoparticles was confirmed from green fluorescence inside the Caco-2 cells. The process of nanoparticle uptake was dose and time dependent in the range of time and concentration studied. Furthermore, the intestinal permeability of EGCG using Caco-2 monolayer was enhanced significantly as delivered by nanoparticles, which indicated the promising elevation of EGCG bioavailability.
Collapse
Affiliation(s)
- Bing Hu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yuwen Ting
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Pan MH, Chiou YS, Wang YJ, Ho CT, Lin JK. Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct 2011; 2:101-10. [PMID: 21779554 DOI: 10.1039/c0fo00174k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The consumption of green tea has long been associated with a reduced risk of cancer development. (-)-Epicatechin-3-gallate (ECG) or (-)-epigallocatechin-3-gallate (EGCG) are the major antioxidative polyphenolic compounds of green tea. They have been shown to exert growth-inhibitory potential of various cancer cells in culture and antitumor activity in vivo models. ECG or EGCG could interact with various molecules like proteins, transcription factors, and enzymes, which block multiple stages of carcinogenesis via regulating intracellular signaling transduction pathways. Moreover, ECG and EGCG possess pharmacological and physiological properties including induction of phase II enzymes, mediation of anti-inflammation response, regulation of cell proliferation and apoptosis effects and prevention of tumor angiogenesis, invasion and metastasis. Numerous review articles have been focused on EGCG, however none have been focused on ECG despite many studies supporting the cancer preventive potential of ECG. To develop ECG as an anticarcinogenic agent, more clear understanding of the cell signaling pathways and the molecular targets responsible for chemopreventive and chemotherapeutic effects are needed. This review summarizes recent research on the ECG-induced cellular signal transduction events which implicate in cancer management.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung 81143, Taiwan.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 2011; 53:155-77. [PMID: 21404918 DOI: 10.1016/b978-0-12-385855-9.00007-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer-preventive effects of tea polyphenols, especially epigallocatechin-3-gallate (EGCG), have been demonstrated by epidemiological, preclinical, and clinical studies. Green tea polyphenols such as EGCG have the potential to affect multiple biological pathways, including gene expression, growth factor-mediated pathways, the mitogen-activated protein kinase-dependent pathway, and the ubiquitin/proteasome degradation pathway. Therefore, identification of the molecular targets of EGCG should greatly facilitate a better understanding of the mechanisms underlying its anticancer and cancer-preventive activities. Performing structure-activity relationship (SAR) studies could also greatly enhance the discovery of novel tea polyphenol analogs as potential anticancer and cancer-preventive agents. In this chapter, we review the relevant literature as it relates to the effects of natural and synthetic green tea polyphenols and EGCG analogs on human cancer cells and their potential molecular targets as well as their antitumor effects. We also discuss the implications of green tea polyphenols in cancer prevention.
Collapse
|
32
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|