1
|
The Endocannabinoid System in the Mediterranean Mussel Mytilus galloprovincialis: Possible Mediators of the Immune Activity? Int J Mol Sci 2021; 22:ijms22094954. [PMID: 34066927 PMCID: PMC8125337 DOI: 10.3390/ijms22094954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Anandamide (AEA) is one of the best characterized members of the endocannabinoid family and its involvement in many pathophysiological processes has been well documented in vertebrates and invertebrates. Here, we report the biochemical and functional characterization of key elements of the endocannabinoid system in hemocytes isolated from the Mediterranean mussel Mytilus galloprovincialis. We also show the effects of exogenous AEA, as well as of capsaicin, on the cell ability to migrate and to activate the respiratory burst, upon in vitro stimulation of phagocytosis. Interestingly, our findings show that both AEA and capsaicin suppress the hemocyte response and that the use of selective antagonists of CB2 and TRPV1 receptors revert their inhibitory effects. Overall, present data support previous evidence on the presence of endocannabinoid signaling in mollusks and advance our knowledge about the evolutionary origins of this endogenous system and its role in the innate response of mollusks.
Collapse
|
2
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
3
|
The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases. Int J Mol Sci 2019; 20:ijms20235875. [PMID: 31771129 PMCID: PMC6928713 DOI: 10.3390/ijms20235875] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.
Collapse
|
4
|
Sakandar HA, Hussain R, Kubow S, Sadiq FA, Huang W, Imran M. Sourdough bread: A contemporary cereal fermented product. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Arbab Sakandar
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Raza Hussain
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | - Stan Kubow
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | | | - Weining Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Muhammad Imran
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|
5
|
Abstract
OPINION STATEMENT Despite the political and social controversy affiliated with it, the medical community must come to the realization that cannabinoids exist as a ubiquitous signaling system in many organ systems. Our understanding of cannabinoids and how they relate not only to homeostasis but also in disease states must be furthered through research, both clinically and in the laboratory. The identification of the cannabinoid receptors in the early 1990s have provided us with the perfect target of translational research. Already, much has been done with cannabinoids and the nervous system. Here, we explore the implications it has for the gastrointestinal tract. Most therapeutics currently on the market presently target only one aspect of the cannabinoid system. Our main purpose here is to highlight areas of research and potential avenues of discovery that the cannabinoid system has yet to reveal.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ron Schey
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Lee Y, Jo J, Chung HY, Pothoulakis C, Im E. Endocannabinoids in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2016; 311:G655-G666. [PMID: 27538961 DOI: 10.1152/ajpgi.00294.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Jeongbin Jo
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea; and
| |
Collapse
|
7
|
Gasperi V, Evangelista D, Savini I, Del Principe D, Avigliano L, Maccarrone M, Catani MV. Downstream effects of endocannabinoid on blood cells: implications for health and disease. Cell Mol Life Sci 2015; 72:3235-52. [PMID: 25957591 PMCID: PMC11113859 DOI: 10.1007/s00018-015-1924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/22/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023]
Abstract
Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels. The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called "endocannabinoid system". The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body. In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells. Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation. Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Daniela Evangelista
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Isabella Savini
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Luciana Avigliano
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher". Neurogastroenterol Motil 2014; 26:447-54. [PMID: 24641009 DOI: 10.1111/nmo.12329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
Abstract
Cannabis has been used to treat various afflictions throughout the centuries, including nausea, vomiting, and pain. It has also been used recreationally for its psychotropic properties, which can include a pleasurable 'high' feeling and a decrease in anxiety and tension; however, other may experience dysphoria. Changes in cognition and psychomotor performance are also well-known with cannabis use. In recent years, our understanding of the endocannabinoid system (ECS) has progressed dramatically; the objective of identifying agents which may allow modulation of the ECS without significant psychotropic side effects may be possible. Inhibition of fatty acid amide hydrolase (FAAH), an important enzyme for the degradation of anandamide and other endogenous cannabinoids, is a promising target to achieve this goal. In this issue of Neurogastroenterology and Motility, Fichna and colleagues report on a novel selective FAAH inhibitor, PF-3845, with potent antinociceptive and antidiarrheal effects in a mouse model. In this context, we briefly review the components of the ECS, discuss pharmacologic targets for indirect cannabinoid receptor stimulation, and describe recent research with cannabinoids for gut disorders.
Collapse
Affiliation(s)
- Y Nasser
- Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
9
|
Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Giuffrida P, Papadia C, Montana C, Pasini A, Vanoli A, Lanzarotto F, Villanacci V, Corazza GR, Maccarrone M. Altered expression of type-1 and type-2 cannabinoid receptors in celiac disease. PLoS One 2013; 8:e62078. [PMID: 23620805 PMCID: PMC3631143 DOI: 10.1371/journal.pone.0062078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/17/2013] [Indexed: 12/29/2022] Open
Abstract
Anandamide (AEA) is the prominent member of the endocannabinoid family and its biological action is mediated through the binding to both type-1 (CB1) and type-2 (CB2) cannabinoid receptors (CBR). The presence of AEA and CBR in the gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in patients with celiac disease.
Collapse
MESH Headings
- Adult
- Celiac Disease/drug therapy
- Celiac Disease/genetics
- Celiac Disease/metabolism
- Celiac Disease/pathology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation/drug effects
- Gliadin/pharmacology
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Male
- Microscopy, Confocal
- Protein Binding/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|