1
|
Islam MR, Al-Imran MIK, Zehravi M, Sweilam SH, Mortuza MR, Gupta JK, Shanmugarajan TS, Devi K, Tummala T, Alshehri MA, Rajagopal K, Asiri M, Ahmad I, Emran TB. Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection. Animal Model Exp Med 2025. [PMID: 39843406 DOI: 10.1002/ame2.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are complex and challenging due to their intricate pathophysiology and limited treatment options. METHODS This review systematically sourced articles related to neurodegenerative diseases, neurodegeneration, quercetin, and clinical studies from primary medical databases, including Scopus, PubMed, and Web of Science. RESULTS Recent studies have included quercetin to impact the cellular and molecular pathways involved in neurodegeneration. Quercetin, a flavonoid abundant in vegetables and fruits, is gaining attention for its antioxidant, anti-inflammatory, and antiapoptotic properties. It regulates signaling pathways such as nuclear factor-κB (NF-κB), sirtuins, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt). These pathways are essential for cellular survival, inflammation regulation, and apoptosis. Preclinical and clinical studies have shown that quercetin improves symptoms and pathology in neurodegenerative models, indicating promising outcomes. CONCLUSIONS The study explores the potential of incorporating laboratory research into practical medical treatment, focusing on quercetin's neuroprotective effects on NDs and its optimal dosage.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Kadirvel Devi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Tanuja Tummala
- Department of Polymer Chemistry, Pittsburg State University, Pittsburg, Kansas, USA
| | | | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| |
Collapse
|
2
|
Balykina A, Naida L, Kirkgöz K, Nikolaev VO, Fock E, Belyakov M, Whaley A, Whaley A, Shpakova V, Rukoyatkina N, Gambaryan S. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int J Mol Sci 2024; 25:4864. [PMID: 38732081 PMCID: PMC11084604 DOI: 10.3390/ijms25094864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.
Collapse
Affiliation(s)
- Anna Balykina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Faculty of General Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Lidia Naida
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia;
| | - Kürsat Kirkgöz
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Michael Belyakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg 188663, Russia;
| | - Anastasiia Whaley
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Andrei Whaley
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Valentina Shpakova
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, UK;
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| |
Collapse
|
3
|
Chang SY, Ko Y, Kim MJ. Regulatory mechanisms of kaempferol on iNOS expression in RINm5F β-cells under exposure to interleukin-1β. Heliyon 2023; 9:e14818. [PMID: 37025778 PMCID: PMC10070653 DOI: 10.1016/j.heliyon.2023.e14818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Proinflammatory cytokines and NO play crucial roles in islet β-cells dysfunction. Though anti-inflammatory effects of kaempferol were revealed in several studies, the detailed mechanisms remain unclear. This study explored protective actions of kaempferol in interleukin-1β-treated RINm5F β-cells. Kaempferol significantly inhibited NO generation, iNOS protein, and iNOS mRNA level. Promoter study, EMSA, and κB-dependent reporter assay showed that kaempferol inhibited NF-κB-mediated iNOS gene transcription. Also, we found that kaempferol accelerated iNOS mRNA instability in iNOS 3'-UTR construct and actinomycin D chase studies. Additionally, kaempferol reduced iNOS protein stability in cycloheximide chase study and it inhibited NOS enzyme activity. Kaempferol inhibited ROS generation and preserved cell viability, and it improved insulin release. These findings suggest that kaempferol appears to be helpful in protecting islet β-cells, thereby supports kaempferol as a supplementary therapeutic candidate in inhibiting the incidence and progression of diabetes mellitus.
Collapse
|
4
|
Al Doghmi A, Barta BP, Egyed-Kolumbán A, Onhausz B, Kiss S, Balázs J, Szalai Z, Bagyánszki M, Bódi N. Gut Region-Specific Interleukin 1β Induction in Different Myenteric Neuronal Subpopulations of Type 1 Diabetic Rats. Int J Mol Sci 2023; 24:ijms24065804. [PMID: 36982878 PMCID: PMC10064852 DOI: 10.3390/ijms24065804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Interleukin 1β (IL1β) is a pro-inflammatory cytokine that may play a crucial role in enteric neuroinflammation in type 1 diabetes. Therefore, our goal is to evaluate the effects of chronic hyperglycemia and insulin treatment on IL1β immunoreactivity in myenteric neurons and their different subpopulations along the duodenum-ileum-colon axis. Fluorescent immunohistochemistry was used to count IL1β expressing neurons as well as the neuronal nitric oxide synthase (nNOS)- and calcitonin gene-related peptide (CGRP)-immunoreactive myenteric neurons within this group. Tissue IL1β level was measured by ELISA in muscle/myenteric plexus-containing homogenates. IL1β mRNA was detected by RNAscope in different intestinal layers. The proportion of IL1β-immunoreactive myenteric neurons was significantly higher in the colon than in the small intestine of controls. In diabetics, this proportion significantly increased in all gut segments, which was prevented by insulin treatment. The proportion of IL1β-nNOS-immunoreactive neurons only increased in the diabetic colon, while the proportion of IL1β-CGRP-immunoreactive neurons only increased in the diabetic ileum. Elevated IL1β levels were also confirmed in tissue homogenates. IL1β mRNA induction was detected in the myenteric ganglia, smooth muscle and intestinal mucosa of diabetics. These findings support that diabetes-related IL1β induction is specific for the different myenteric neuronal subpopulations, which may contribute to diabetic motility disturbances.
Collapse
Affiliation(s)
- Afnan Al Doghmi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Bence Pál Barta
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Abigél Egyed-Kolumbán
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Benita Onhausz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Szilvia Kiss
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - János Balázs
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
6
|
Smoak P, Burke SJ, Collier JJ. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:2465-2491. [PMID: 35098034 PMCID: PMC8796700 DOI: 10.1007/s42399-021-01034-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered into distinct subtypes based on the route of development, with the most common forms associated with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants have been used historically to reduce the pathological features associated with diabetes. In this review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts investigated using various preclinical and clinical study designs. In some cases, crude extracts were examined directly, and in others, purified compounds were explored for their possible therapeutic efficacy. A subset of these studies compared the botanical product with standard of care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future drug discovery and refinement into class(es) of compounds that have either direct or adjuvant therapeutic benefit.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Susan J. Burke
- Immunogenetics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, LA 70808 Baton Rouge, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
7
|
Earpina S, McDonough K, Yeboah-Awudzi M, Cook KJ, Aggarwal S, Losso JN. Muscadine or amla extracts standardized to ellagic acid content ameliorate glucolipotoxicity associated β-cell dysfunction via inhibition of IL-1β and improved insulin secretion. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractGlucolipotocixity induces IL-1 β secretion which impairs pancreatic β-cell insulin secretion. Ellagic acid and urolithin A have strong anti-inflammatory effect on cells. Muscadine and amla are very good sources of ellagic acid. The present study examined the effect of ellagic acid, ellagic acid-rich muscadine or amla extract, or urolothin A on inflammation in β cells under glucolipotoxic conditions. Rat NIT-1 β cells were incubated in glucolipotoxic conditions (33.3 mM glucose, 250 μM palmitic acid or 33.3 mM glucose + 250 μM palmitic acid with or without ellagic acid, ellagic acid-rich muscadine or amla extracts standardized to its ellagic acid content, or urolithin A). Inflammatory status was evidenced by ELISA analysis of insulin and IL-1β secretion. Ellagic acid-rich muscadine or amla extracts dose-dependently stimulated insulin secretion and down-regulated IL-1β better than pure ellagic acid, or urolithin A. Urolithin A did not statistically stimulate insulin secretion and did not inhibit IL-1β.
Collapse
|
8
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
9
|
ESI-TOF MS analysis of complexes formed between quercetin and five metal ions in hot water and a study into their DNA cleavage activity. J Inorg Biochem 2019; 195:13-19. [PMID: 30877879 DOI: 10.1016/j.jinorgbio.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
Quercetin is a flavonoid compound widely found in vegetables, fruits, and medicinal plants. It has carbonyl and phenolic hydroxyl groups in its structure that can easily form complexes with metal ions. In this study, we reacted quercetin in water at 95 °C with five metal trace elements commonly found in plants, namely calcium, magnesium, zinc, iron(III), and copper. Each supernatant was then examined by electrospray ionization-time-of-flight mass spectrometry (ESI-TOF MS). The results showed that quercetin can form complexes with Ca2+, Mg2+, Zn2+, and Cu2+ in ratios of 2:1, 3:1, and 3:2. Interestingly, after reaction with Fe3+ in water at 95 °C, not only can quercetin‑iron(III) complexes be formed in ratios of 2:1 and 3:1, but small amounts of quercetin‑iron(II) complexes can also be formed in the same ratios. Furthermore, DNA cleavage experiments showed that when acting alone, quercetin and Cu2+ have weak or no cleavage effects on DNA, but the complex formed after reaction in hot water cleaves DNA in a time- and concentration-dependent manner. These results indicate that complexes may form between quercetin and a variety of metal trace elements in a water decoction of plants, and that these metal complexes may be the material basis for the health-promoting and therapeutic effects of edible or medicinal plants.
Collapse
|
10
|
Elnoury HA. Isoquercetin Could Protect Against Ovariectomy-Induced Neuronal Changes in Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.047] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
12
|
Miladpour B, Rasti M, Owji AA, Mostafavipour Z, Khoshdel Z, Noorafshan A, Zal F. Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro. J Endocrinol Invest 2017; 40:513-521. [PMID: 28000178 DOI: 10.1007/s40618-016-0592-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/27/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Type 1 diabetes is an autoimmune disease caused by the destruction of β-cells in the pancreas. Bone marrow mesenchymal stem cells are multipotent and easy accessible adult stem cells that may provide options in the treatment of type 1 diabetes. Injured pancreatic extract can promote the differentiation of rat bone marrow mesenchymal stem cells into β-cells. We aimed to observe the effect of quercetin in differentiation and insulin secretion in β-cells. METHODS Bone marrow mesenchymal stem cells were obtained from the tibiae of rats. Cell surface markers were analyzed by flow cytometry. The cells were treated with rat injured pancreatic extract and quercetin for 2 weeks. Insulin secretion was measured by ELISA. Insulin expression and some islet factors were evaluated by RT-PCR. PDX1, a marker for β-cell function and differentiation, was evaluated by both immunocytochemistry and Western blot. β-cell count was determined by stereology and cell count assay. RESULTS ELISA showed significant differences in insulin secretion in the cells treated with RIPE + 20 μM quercetin (0.55 ± 0.01 µg/L) compared with the cells treated with RIPE alone (0.48 ± 0.01 µg/L) (P = 0.026). RT-PCR results confirmed insulin expression in both groups. PDX1 protein was detected in both groups by Western blot and immunocytochemistry. Stereology results showed a significant increase in β-cell number in the RIPE + quercetin-treated cells (47 ± 2.0) when compared with RIPE treatment alone (44 ± 2.5) (P = 0.015). CONCLUSIONS Quercetin has a strengthening effect on the differentiation of rat bone marrow mesenchymal stem cells into β-cells and increases insulin secretion from the differentiated β-cells in vitro.
Collapse
Affiliation(s)
- B Miladpour
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Rasti
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A A Owji
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Mostafavipour
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Khoshdel
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Noorafshan
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Hashimoto N, Blumberg JB, Chen CYO. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. J Med Food 2016; 19:141-7. [DOI: 10.1089/jmf.2015.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Naoto Hashimoto
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
- Koshi Headquarters, National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto, Japan
- Memuro Research Station, National Agriculture Research Center for Hokkaido Region, Kasai, Hokkaido, Japan
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2986796. [PMID: 26904161 PMCID: PMC4745323 DOI: 10.1155/2016/2986796] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/04/2023]
Abstract
Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection.
Collapse
|
15
|
Oh YS. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:629863. [PMID: 26587047 PMCID: PMC4637477 DOI: 10.1155/2015/629863] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
| |
Collapse
|
16
|
May BH, Deng S, Zhang AL, Lu C, Xue CCL. In silico database screening of potential targets and pathways of compounds contained in plants used for psoriasis vulgaris. Arch Dermatol Res 2015; 307:645-57. [PMID: 26142738 DOI: 10.1007/s00403-015-1577-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/11/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022]
Abstract
Reviews and meta-analyses of clinical trials identified plants used as traditional medicines (TMs) that show promise for psoriasis. These include Rehmannia glutinosa, Camptotheca acuminata, Indigo naturalis and Salvia miltiorrhiza. Compounds contained in these TMs have shown activities of relevance to psoriasis in experimental models. To further investigate the likely mechanisms of action of the multiple compounds in these TMs, we undertook a computer-based in silico investigation of the proteins known to be regulated by these compounds and their associated biological pathways. The proteins reportedly regulated by compounds in these four TMs were identified using the HIT (Herbal Ingredients' Targets) database. The resultant data were entered into the PANTHER (Protein ANnotation THrough Evolutionary Relationship) database to identify the pathways in which the proteins could be involved. The study identified 237 compounds in the TMs and these retrieved 287 proteins from HIT. These proteins identified 59 pathways in PANTHER with most proteins being located in the Apoptosis, Angiogenesis, Inflammation mediated by chemokine and cytokine, Gonadotropin releasing hormone receptor, and/or Interleukin signaling pathways. All four TMs contained compounds that had regulating effects on Apoptosis regulator BAX, Apoptosis regulator Bcl-2, Caspase-3, Tumor necrosis factor (TNF) or Prostaglandin G/H synthase 2 (COX2). The main proteins and pathways are primarily related to inflammation, proliferation and angiogenesis which are all processes involved in psoriasis. Experimental studies have reported that certain compounds from these TMs can regulate the expression of proteins involved in each of these pathways.
Collapse
Affiliation(s)
- Brian H May
- School of Health Sciences, and Traditional and Complementary Medicine Research Program, Health Innovations Research Institute, RMIT University, Bundoora, VIC, 3083, Australia
| | | | | | | | | |
Collapse
|
17
|
Bardy G, Virsolvy A, Quignard JF, Ravier MA, Bertrand G, Dalle S, Cros G, Magous R, Richard S, Oiry C. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol 2015; 169:1102-13. [PMID: 23530660 DOI: 10.1111/bph.12194] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca(2+)]i) in beta cells, in the absence of any co-stimulating factor. EXPERIMENTAL APPROACH Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca(2+)]i were measured using the ratiometric fluorescent Ca(2+) indicator Fura-2. Ca(2+) channel currents were recorded with the whole-cell patch-clamp technique. KEY RESULTS Quercetin concentration-dependently increased insulin secretion and elevated [Ca(2+)]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L(-1)), but were nearly abolished by the L-type Ca(2+) channel antagonist nifedipine (1 μmol·L(-1)). Similar to the L-type Ca(2+) channel agonist Bay K 8644, quercetin enhanced the L-type Ca(2+) current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca(2+)]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L(-1)), with the two drugs having cumulative effects on [Ca(2+)]i. CONCLUSIONS AND IMPLICATIONS Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca(2+) influx through an interaction with L-type Ca(2+) channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion.
Collapse
Affiliation(s)
- G Bardy
- Département de Pharmacologie Médicale et Toxicologie, Hôpital Lapeyronie, CHRU de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014; 88:1803-53. [PMID: 25182418 DOI: 10.1007/s00204-014-1330-7] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Collapse
|
19
|
Oh YS, Jun HS. Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation. Nutr Metab Insights 2014; 7:51-9. [PMID: 25092987 PMCID: PMC4116378 DOI: 10.4137/nmi.s13589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023] Open
Abstract
Bioactive compounds found in fruits and vegetables can have anti-oxidant, anti-inflammatory, and anti-carcinogenic effects and can be protective against various diseases and metabolic disorders. These beneficial effects make them good candidates for the development of new functional foods with potential protective and preventive properties for type 1 and type 2 diabetes. This review summarizes the most relevant results concerning the effects of various bioactive compounds such as flavonoids, vitamins, and carotenoids on several aspects of beta-cell functionality. Studies using animal models with induced diabetes and diabetic patients support the hypothesis that bioactive compounds could ameliorate diabetic phenotypes. Published data suggest that there might be direct effects of bioactive compounds on enhancing insulin secretion and preventing beta-cell apoptosis, and some compounds might modulate beta-cell proliferation. Further research is needed to establish any clinical effects of these compounds.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea. ; College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
| |
Collapse
|
20
|
Investigations on synthesis and structure elucidation of novel [1,2,4]triazolo[1,2-a]pyridazine-1-thiones and their inhibitory activity against inducible nitric oxide synthase. Bioorg Med Chem 2013; 21:5518-31. [DOI: 10.1016/j.bmc.2013.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022]
|
21
|
The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia 2013; 87:20-6. [PMID: 23537890 DOI: 10.1016/j.fitote.2013.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate potential hepatoprotective capabilities of quercetin in relation to its modulation of the HO-1 and NOS-2 activities in an experimental model of fulminant liver failure. Liver insult was induced by in vivo administration of D-galactosamine (d-GalN, 400 mg/kg, i.p.) and lipopolysaccharide (LPS, 10 μg/kg, i.p.). The effects of quercetin (50 mg/kg, i.p) on D-GalN toxicity was evaluated by standard biochemical, RT-PCR and Western blot methods. Administration of d-GalN/LPS combination resulted in significantly higher plasma levels of aminotransferases, as well as increased mRNA and protein expressions of both HO-1 and NOS-2 enzymes. Quercetin exhibited cytoprotective effects on the liver, as evidenced by decreased aminotransferase plasma levels. Additionally, quercetin treatment in D-GalN/LPS treated rats significantly increased HO-1 mRNA and its protein expressions. On the contrary, quercetin did not exhibit any significant effects on the levels of nitrites, and NOS-2 mRNA and protein expressions in D-GalN/LPS treated rats. Quercetin when given alone did not have any significant changes on liver enzymes nor HO-1 and NOS-2 mRNA and protein expressions. It can be concluded that the quercetin's induction of HO-1 and its byproducts, without concomitant NOS-2 activity reduction, is among mechanisms contributing to the hepatoprotective effect in D-GalN/LPS hepatotoxicity.
Collapse
|
22
|
Dai X, Ding Y, Zhang Z, Cai X, Bao L, Li Y. Quercetin But Not Quercitrin Ameliorates Tumor Necrosis Factor-Alpha-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Biol Pharm Bull 2013; 36:788-95. [DOI: 10.1248/bpb.b12-00947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| |
Collapse
|
23
|
Dai X, Ding Y, Zhang Z, Cai X, Li Y. Quercetin and quercitrin protect against cytokine‑induced injuries in RINm5F β-cells via the mitochondrial pathway and NF-κB signaling. Int J Mol Med 2012; 31:265-71. [PMID: 23138875 DOI: 10.3892/ijmm.2012.1177] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/22/2012] [Indexed: 11/06/2022] Open
Abstract
Quercetin, existing mostly in its glycoside form quercitrin, is the most widely distributed flavonoid in nature. It possesses various potential effects as an antioxidant, anti-inflammatory for cell damage of β-cells, however, studies on this topic are limited and controversial. In order to examine the effects of quercetin on type I diabetes mellitus, we investigated the role of quercetin/quercitrin in cytokine-induced β-cell injuries in RINm5F rat insulinoma cells. Cell viability, glucose-stimulated insulin secretion (GSIS), intracellular reactive oxygen species (ROS), nitric oxide (NO) and inflammation or apoptosis-associated protein expression were measured with or without quercetin/quercitrin treatment. We also compared the differences between the aglycone and the glycoside forms of quercetin, with the aim to shed some light on their structures and transportation into cells. The results showed that quercetin/quercitrin protected against cytokine-induced cell death, improved GSIS, and inhibited ROS as well as NO accumulation. These effects were associated with reduced expression of inducible nitric oxide synthases (iNOS) and inhibited translocation of nuclear factor-κB (NF-κB). Also, quercetin/quercitrin suppressed cytochrome c release from mitochondria and the following alteration of downstream proteins, suggesting that mitochondrial apoptosis was attenuated by quercetin treatment. In summary, quercetin and quercitrin are potential candidates to prevent β-cell death via the mitochondrial pathway and NF-κB signaling, and quercetin may be more efficacious than quercitrin as an anti-diabetic agent.
Collapse
Affiliation(s)
- Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Haidian, Beijing 100191, PR China
| | | | | | | | | |
Collapse
|
24
|
Caimi G, Hopps E, Montana M, Noto D, Canino B, Lo Presti R, Averna MR. Evaluation of nitric oxide metabolites in a group of subjects with metabolic syndrome. Diabetes Metab Syndr 2012; 6:132-135. [PMID: 23158975 DOI: 10.1016/j.dsx.2012.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM To evaluate the concentration of metabolites (NO(2)(-), NO(3)(-)) of nitric oxide (NO) in metabolic syndrome (MS). MATERIALS AND METHODS We enrolled 106 subjects (45 women and 61 men) with MS of which 43 (14 women and 27 men) with diabetes mellitus and 63 (31 women and 32 men) without diabetes mellitus, and 54 subjects (19 women and 35 men) as control group. The nitric oxide metabolites (nitrite+nitrate=NOx) were evaluated employing the Griess reagent. RESULTS In the whole group of MS subjects was evident, in comparison with control group, a significant increase in NOx. The same finding was also present between control group and diabetic subjects with MS and between control group and nondiabetic subjects with MS. No difference was observed between the two subgroups (diabetic and nondiabetic subjects with MS) about NOx. Contrasting information were obtained examining the linear regression among NOx, age, anthropometric profile, blood pressure values and glycometabolic pattern of subjects with MS. CONCLUSIONS In MS subjects we found a significant increase in NOx not influenced by diabetes mellitus. The NOx is a parameter that must be considered in MS keeping in mind that its behavior is related to chronic inflammation that accompanies this clinical condition.
Collapse
Affiliation(s)
- Gregorio Caimi
- Dipartimento di Medicina Interna e Specialistica, Università di Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|