1
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Hatasa M, Yoshida S, Takahashi H, Tanaka K, Kubotsu Y, Ohsugi Y, Katagiri T, Iwata T, Katagiri S. Relationship between NAFLD and Periodontal Disease from the View of Clinical and Basic Research, and Immunological Response. Int J Mol Sci 2021; 22:3728. [PMID: 33918456 PMCID: PMC8038294 DOI: 10.3390/ijms22073728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by pathogenic oral microorganisms that leads to the destruction of alveolar bone and connective tissues around the teeth. Although many studies have shown that periodontal disease is a risk factor for systemic diseases, such as type 2 diabetes and cardiovascular diseases, the relationship between nonalcoholic fatty liver disease (NAFLD) and periodontal disease has not yet been clarified. Thus, the purpose of this review was to reveal the relationship between NAFLD and periodontal disease based on epidemiological studies, basic research, and immunology. Many cross-sectional and prospective epidemiological studies have indicated that periodontal disease is a risk factor for NAFLD. An in vivo animal model revealed that infection with periodontopathic bacteria accelerates the progression of NAFLD accompanied by enhanced steatosis. Moreover, the detection of periodontopathic bacteria in the liver may demonstrate that the bacteria have a direct impact on NAFLD. Furthermore, Porphyromonas gingivalis lipopolysaccharide induces inflammation and accumulation of intracellular lipids in hepatocytes. Th17 may be a key molecule for explaining the relationship between periodontal disease and NAFLD. In this review, we attempted to establish that oral health is essential for systemic health, especially in patients with NAFLD.
Collapse
Affiliation(s)
- Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sumiko Yoshida
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan;
- Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| |
Collapse
|
3
|
Jiang J, Yan L, Shi Z, Wang L, Shan L, Efferth T. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153082. [PMID: 31541796 DOI: 10.1016/j.phymed.2019.153082] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Citrus flavonoids, consisting of naringin, narirutin, neohesperidine, etc., have therapeutic activities for the treatment of lipometabolic disorders. The peel of Citrus changshan-huyou (Qu Zhi Ke, QZK) is a new source of flavonoids, but attracted little attention so far. HYPOTHESIS QZK should possess therapeutic effects against lipometabolic disorders due to the flavonoids it contains. STUDY DESIGN In this study, we extracted and purified the flavonoids of QZK (TFCH) and established an obesity-induced non-alcoholic fatty liver disease (NAFLD) model of rats. TFCH was given orally for 8 weeks, and its anti-NAFLD effects and potential mechanism were evaluated. METHODS The flavonoid chemoprofile of TFCH was determined by using HPLC. High-fat diet was employed to induce NAFLD model in rats, and six groups were set up: negative control group, reference treatment group, model group, low-dose TFCH (25 mg/kg), intermediate-dose TFCH (50 mg/kg), and high-dose TFCH (100 mg/kg). Serum and liver levels of inflammatory cytokines and NAFLD markers were measured biochemically. The relative mRNA expressions of liver T-bet, GATA3, and TNF-α were tested by real time PCR (qPCR) analysis. The protein expression of p38 and the phosphorylation of NF-κB, ERK1/2, and p38 in liver were tested by Western blot analysis. RESULTS The histopathological observation showed that TFCH attenuated hepatic lesions with significantly decreased NAFLD activity scores. The biochemical data showed that TFCH significantly suppressed both systemic and intrahepatic inflammation by inhibiting IL-1β, IL-6, IL-12, TNF-α, and IFN-γ, and the qPCR analysis revealed a Th1/Th2 related anti-inflammatory mechanism of TFCH. Western blot results clarified that TFCH exerted hepatoprotective and anti-inflammatory effects by suppression of phosphorylated NF-κB and MAPKs, indicating a mechanism associated with NF-κB and MAPK signaling pathways. CONCLUSION QZK is a new source of Citrus flavonoids for therapeutic use, and TFCH is a promising representative of Citrus flavonoids for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Jianping Jiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China; Zhejiang You-du Biotech Limited Company, Quzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Shi
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lixia Wang
- Citrus changshan-huyou Research Institute of Changshan City, Quzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, Vonghia L. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front Immunol 2019; 10:82. [PMID: 30787925 PMCID: PMC6372559 DOI: 10.3389/fimmu.2019.00082] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes a spectrum of disease states characterized by hepatic steatosis and is closely associated to obesity and the metabolic syndrome. In non-alcoholic steatohepatitis (NASH), additionally, inflammatory changes and hepatocellular damage are present, representing a more severe condition, for which the treatment is an unmet medical need. Pathophysiologically, the immune system is one of the main drivers of NAFLD progression and other obesity-related comorbidities, and both the innate and adaptive immune system are involved. T cells form the cellular component of the adaptive immune system and consist of multiple differentially active subsets, i.e., T helper (Th) cells, regulatory T (Treg) cells, and cytotoxic T (Tc) cells, as well as several innate T-cell subsets. This review focuses on the role of these T-cell subsets in the pathogenesis of NAFLD, as well as the association with obesity and type 2 diabetes mellitus, reviewing the available evidence from both animal and human studies. Briefly, Th1, Th2, Th17, and Th22 cells seem to have an attenuating effect on adiposity. Th2, Th22, and Treg cells seem to decrease insulin resistance, whereas Th1, Th17, and Tc cells have an aggravating effect. Concerning NAFLD, both Th22 and Treg cells appear to have an overall tempering effect, whereas Th17 and Tc cells seem to induce more liver damage and fibrosis progression. The evidence regarding the role of the innate T-cell subsets is more controversial and warrants further exploration.
Collapse
Affiliation(s)
- Mikhaïl A Van Herck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Jonas Weyler
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Eveline L Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Luisa Vonghia
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
5
|
Cavalcante-Silva LHA, Galvão JGFM, da Silva JSDF, de Sales-Neto JM, Rodrigues-Mascarenhas S. Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Front Physiol 2015; 6:341. [PMID: 26635627 PMCID: PMC4652019 DOI: 10.3389/fphys.2015.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
The intimate interplay between immune system, metabolism, and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signaling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José G F M Galvão
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Juliane Santos de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Sandra Rodrigues-Mascarenhas
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| |
Collapse
|
6
|
Gerriets VA, MacIver NJ. Role of T cells in malnutrition and obesity. Front Immunol 2014; 5:379. [PMID: 25157251 PMCID: PMC4127479 DOI: 10.3389/fimmu.2014.00379] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022] Open
Abstract
Nutritional status is critically important for immune cell function. While obesity is characterized by inflammation that promotes metabolic syndrome including cardiovascular disease and insulin resistance, malnutrition can result in immune cell defects and increased risk of mortality from infectious diseases. T cells play an important role in the immune adaptation to both obesity and malnutrition. T cells in obesity have been shown to have an early and critical role in inducing inflammation, accompanying the accumulation of inflammatory macrophages in obese adipose tissue, which are known to promote insulin resistance. How T cells are recruited to adipose tissue and activated in obesity is a topic of considerable interest. Conversely, T cell number is decreased in malnourished individuals, and T cells in the setting of malnutrition have decreased effector function and proliferative capacity. The adipokine leptin, which is secreted in proportion to adipocyte mass, may have a key role in mediating adipocyte-T cell interactions in both obesity and malnutrition, and has been shown to promote effector T cell function and metabolism while inhibiting regulatory T cell proliferation. Additionally, key molecular signals are involved in T cell metabolic adaptation during nutrient stress; among them, the metabolic regulator AMP kinase and the mammalian target of rapamycin have critical roles in regulating T cell number, function, and metabolism. In summary, understanding how T cell number and function are altered in obesity and malnutrition will lead to better understanding of and treatment for diseases where nutritional status determines clinical outcome.
Collapse
Affiliation(s)
- Valerie A Gerriets
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center , Durham, NC , USA
| | - Nancie J MacIver
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
7
|
MitoNEET-mediated effects on browning of white adipose tissue. Nat Commun 2014; 5:3962. [PMID: 24865177 PMCID: PMC4084619 DOI: 10.1038/ncomms4962] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/25/2014] [Indexed: 12/24/2022] Open
Abstract
MitoNEET is an outer mitochondrial membrane protein that, upon overexpression in white adipose tissue (WAT), exerts a positive impact on tissue expansion and whole-body lipid and carbohydrate homeostasis by altering mitochondrial matrix iron metabolism. Here we determine the key transcriptional events in subcutaneous WAT of mice in response to mitoNEET overexpression and a high-fat diet (HFD). Microarray analyses at key points during weight gain upon body-weight divergence with wild-type mice demonstrate that mitoNEET-enriched sWAT early on upregulates a browning signature program that limits WAT expansion in transgenic mice for a period of up to 12-weeks of HFD. This compensatory browning phenotype is subsequently lost, resulting in rapid WAT expansion and body-weight gain. Exposure to thermoneutral temperatures during HFD prompts weight gain significantly earlier. Similar WAT expansion is achieved upon infection with an adeno-associated virus expressing mitoNEET. Collectively, the mitoNEET enriched fat-pads feature a more vascularized, anti-inflammatory and less fibrotic environment.
Collapse
|