1
|
Li D, Dong L, Li J, Zhang S, Lei Y, Deng M, Li J. Optimization of enzymatic synthesis of theaflavins from potato polyphenol oxidase. Bioprocess Biosyst Eng 2022; 45:1047-1055. [PMID: 35487994 DOI: 10.1007/s00449-022-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
Theaflavin (TF), a chemical component important in measuring the quality of fermented tea, has a strong natural antioxidant effect and many pharmacological functions. Enzymatic oxidation has become a widely used method for preparing TFs at the current research stage. Using plant exogenous polyphenol oxidase (PPO) to enzymatically synthesize TFs can significantly increase yield and purity. In this study, tea polyphenols were used as the reaction substrate to discuss the optimal synthesis conditions of potato PPO enzymatic synthesis of theaflavins and the main products of enzymatic synthesis of TFs. The optimal enzymatic synthesis conditions were as follows: pH of the reaction system was 5.5, reaction time was 150 min, substrate concentration was 6.0 mg/mL, reaction temperature was 20 °C, and the maximum amount of TFs produced was 651.75 μg/mL. At the same time, high-performance liquid chromatography was used to determine the content of theaflavins and catechins in the sample to be tested, and the dynamic changes and correlations of the main catechins and theaflavins in the optimal enzymatic system were analyzed. The results showed that epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) are all the main substrates synthesis of TFs. The main substrate of TFs and its strongest enzymatic catalytic effect on EGCG make theaflavin-3,3'-digallate (TFDG) the most important synthetic monomer. In this study, theaflavins were synthesized by polyphenol oxidase catalysis, which laid a foundation for industrialization of theaflavins.
Collapse
Affiliation(s)
- Dong Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| | - Liang Dong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| | - Jieyuan Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| | - Shiqi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China.
| | - Yu Lei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| | - Mengsheng Deng
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| | - Jingya Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Cavalcanti-de-Albuquerque JP, Kincheski GC, Louzada RA, Galina A, Pierucci APTR, Carvalho DP. Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats. Exp Physiol 2018; 103:1076-1086. [PMID: 29893447 DOI: 10.1113/ep086916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does an acute session of exercise affect food intake of male Wistar rats? What is the main finding and its importance? Food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. This work raises new feeding-related targets that would explain how exercise drives body weight loss. ABSTRACT Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with a well-oriented programme of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this article, we hypothesize that an acute exercise session would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- or high-intensity PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to moderate-intensity PE, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the high-intensity PE group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of the glucose inhibitory effect on food intake.
Collapse
Affiliation(s)
- João Paulo Cavalcanti-de-Albuquerque
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Nutrition Josue de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grasielle Clotildes Kincheski
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | - Ruy Andrade Louzada
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | | | - Denise P Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Guénard F, Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. Genome-Wide Association Study of Dietary Pattern Scores. Nutrients 2017; 9:E649. [PMID: 28644415 PMCID: PMC5537769 DOI: 10.3390/nu9070649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/08/2023] Open
Abstract
Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10-5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns.
Collapse
Affiliation(s)
- Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Annie Bouchard-Mercier
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec, Laval University, Québec, QC G1V 4G2, Canada.
| | - Simone Lemieux
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Patrick Couture
- Institute of Nutrition and Functional Foods (INAF), Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec, Laval University, Québec, QC G1V 4G2, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells. Sci Rep 2016; 6:28963. [PMID: 27387960 PMCID: PMC4937440 DOI: 10.1038/srep28963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022] Open
Abstract
The gene PFKFB3 encodes for inducible 6-phosphofructo-2-kinase, a glycolysis-regulatory enzyme that protects against diet-induced intestine inflammation. However, it is unclear how nutrient overload regulates PFKFB3 expression and inflammatory responses in intestinal epithelial cells (IECs). In the present study, primary IECs were isolated from small intestine of C57BL/6J mice fed a low-fat diet (LFD) or high-fat diet (HFD) for 12 weeks. Additionally, CMT-93 cells, a cell line for IECs, were cultured in low glucose (LG, 5.5 mmol/L) or high glucose (HG, 27.5 mmol/L) medium and treated with palmitate (50 μmol/L) or bovine serum albumin (BSA) for 24 hr. These cells were analyzed for PFKFB3 and inflammatory markers. Compared with LFD, HFD feeding decreased IEC PFKFB3 expression and increased IEC proinflammatory responses. In CMT-93 cells, HG significantly increased PFKFB3 expression and proinflammatory responses compared with LG. Interestingly, palmitate decreased PFKFB3 expression and increased proinflammatory responses compared with BSA, regardless of glucose concentrations. Furthermore, HG significantly increased PFKFB3 promoter transcription activity compared with LG. Upon PFKFB3 overexpression, proinflammatory responses in CMT-93 cells were decreased. Taken together, these results indicate that in IECs glucose stimulates PFKFB3 expression and palmitate contributes to increased proinflammatory responses. Therefore, PFKFB3 regulates IEC inflammatory status in response to macronutrients.
Collapse
|
5
|
Burghardt PR, Krolewski DM, Dykhuis KE, Ching J, Pinawin AM, Britton SL, Koch LG, Watson SJ, Akil H. Nucleus accumbens cocaine-amphetamine regulated transcript mediates food intake during novelty conflict. Physiol Behav 2016; 158:76-84. [PMID: 26926827 DOI: 10.1016/j.physbeh.2016.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 02/09/2023]
Abstract
Obesity is a persistent and pervasive problem, particularly in industrialized nations. It has come to be appreciated that the metabolic health of an individual can influence brain function and subsequent behavioral patterns. To examine the relationship between metabolic phenotype and central systems that regulate behavior, we tested rats with divergent metabolic phenotypes (Low Capacity Runner: LCR vs. High Capacity Runner: HCR) for behavioral responses to the conflict between hunger and environmental novelty using the novelty suppressed feeding (NSF) paradigm. Additionally, we measured expression of mRNA, for peptides involved in energy management, in response to fasting. Following a 24-h fast, LCR rats showed lower latencies to begin eating in a novel environment compared to HCR rats. A 48-h fast equilibrated the latency to begin eating in the novel environment. A 24-h fast differentially affected expression of cocaine-amphetamine regulated transcript (CART) mRNA in the nucleus accumbens (NAc), where 24-h of fasting reduced CART mRNA in LCR rats. Bilateral microinjections of CART 55-102 peptide into the NAc increased the latency to begin eating in the NSF paradigm following a 24-h fast in LCR rats. These results indicate that metabolic phenotype influences how animals cope with the conflict between hunger and novelty, and that these differences are at least partially mediated by CART signaling in the NAc. For individuals with poor metabolic health who have to navigate food-rich and stressful environments, changes in central systems that mediate conflicting drives may feed into the rates of obesity and exacerbate the difficulty individuals have in maintaining weight loss.
Collapse
Affiliation(s)
- P R Burghardt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI; Department of Nutrition and Food Science, Wayne State University, Detroit, MI.
| | - D M Krolewski
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - K E Dykhuis
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - J Ching
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - A M Pinawin
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - S J Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI; Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - H Akil
- Department of Psychiatry, University of Michigan, Ann Arbor, MI; Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Lv Y, Zhang B, Zhai C, Qiu J, Zhang Y, Yao W, Zhang C. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem Int 2015; 91:26-33. [PMID: 26498254 DOI: 10.1016/j.neuint.2015.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/13/2023]
Abstract
Reactive astrocyte proliferation is involved in many central degenerative diseases. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), an allosteric activator of 6-phosphofructo-1-kinase (PFK1), controls glycolytic flux. Furthermore, APC/C-Cdh1 plays a crucial role in brain metabolism by regulating PFKFB3 expression. Previous studies have defined the roles of PFKFB3-mediated glycolysis in pathological angiogenesis, cell autophagy, and amyloid plaque deposition in proliferating cells. However, the role of PFKFB3 in reactive astrocyte proliferation after cerebral ischemia is unknown. In this study, we cultured rat primary cortical astrocytes and established an oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic cerebral ischemia in vivo. Astrocyte proliferation was measured by western blotting for proliferating cell nuclear antigen (PCNA) and by EdU incorporation. We found that OGD/R up-regulated PFKFB3 and PFK1 expression, which was accompanied by reactive astrocyte proliferation. Knockdown of PFKFB3 by siRNA transfection significantly inhibited reactive astrocyte proliferation and lactate release, an indicator of glycolysis. We found that PFKFB3 and PFK1 expression were down-regulated and lactate release was decreased when OGD/R-induced astrocyte proliferation was inhibited by a Cdh1-expressing lentivirus. Thus, reactive astrocyte proliferation can be effectively suppressed by down-regulation of PFKFB3 through control of glycolytic flux, which is downstream of APC/C-Cdh1.
Collapse
Affiliation(s)
- Youyou Lv
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunchun Zhai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Muller YL, Piaggi P, Hanson RL, Kobes S, Bhutta S, Abdussamad M, Leak-Johnson T, Kretzler M, Huang K, Weil EJ, Nelson RG, Knowler WC, Bogardus C, Baier LJ. A cis-eQTL in PFKFB2 is associated with diabetic nephropathy, adiposity and insulin secretion in American Indians. Hum Mol Genet 2015; 24:2985-96. [PMID: 25662186 DOI: 10.1093/hmg/ddv040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/02/2015] [Indexed: 01/13/2023] Open
Abstract
A prior genome-wide association study (GWAS) in Pima Indians identified a variant within PFKFB2 (rs17258746) associated with body mass index (BMI). PFKFB2 encodes 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isoform 2, which plays a role in glucose metabolism. To follow-up on the GWAS, tag SNPs across PFKFB2 were genotyped in American Indians (AI) who had longitudinal data on BMI (n = 6839), type 2 diabetes (T2D; n = 7710), diabetic nephropathy (DN; n = 2452), % body fat (n = 555) and insulin secretion (n = 298). Two SNPs were further genotyped in urban AI to assess replication for DN (n = 864). PFKFB2 expression was measured in 201 adipose biopsies using real-time RT-PCR and 61 kidney biopsies using the Affymetrix U133 array. Two SNPs (rs17258746 and rs11120137), which capture the same signal, were associated with maximum BMI in adulthood (β = 1.02 per risk allele, P = 7.3 × 10(-4)), maximum BMI z-score in childhood (β = 0.079, P = 0.03) and % body fat in adulthood (β = 3.4%, P = 3 × 10(-7)). The adiposity-increasing allele correlated with lower PFKFB2 adipose expression (β = 0.81, P = 9.4 × 10(-4)). Lower expression of PFKFB2 further correlated with higher % body fat (r = -0.16, P = 0.02) and BMI (r = -0.17, P = 0.02). This allele was also associated with increased risk for DN in both cohorts of AI [odds ratio = 1.64 (1.32-2.02), P = 5.8 × 10(-6)], and similarly correlated with lower PFKFB2 expression in kidney glomeruli (β = 0.87, P = 0.03). The same allele was also associated with lower insulin secretion assessed by acute insulin response (β = 0.78, P = 0.03) and 30-min plasma insulin concentrations (β = 0.78, P = 1.1 × 10(-4)). Variation in PFKFB2 appears to reduce PFKFB2 expression in adipose and kidney tissues, and thereby increase risk for adiposity and DN.
Collapse
Affiliation(s)
- Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Shujera Bhutta
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Maryam Abdussamad
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Tennille Leak-Johnson
- Department of Internal Medicine and Computational Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Department of Internal Medicine and Computational Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ke Huang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - E Jennifer Weil
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Robert G Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, AZ, USA and
| |
Collapse
|