1
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
2
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
3
|
Terrones-Gurrola MCDR, Ponce-Peña P, Salas-Pacheco JM, Camacho-Luis A, Pozos-Guillén ADJ, Nieto-Delgado G, López-Guzmán OD, Vértiz-Hernández AA. Arsenic: A Perspective on Its Effect on Pioglitazone Bioavailability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1901. [PMID: 36767268 PMCID: PMC9915544 DOI: 10.3390/ijerph20031901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Arsenic (As) is a common contaminant in drinking water in northeastern Mexico, which reduces the expression of cytochrome P450 (CYP 450). This enzyme group metabolizes numerous drugs, such as oral antidiabetic drugs such as pioglitazone (61% CYP 3A4, 49% CYP 2C8). When CYP 450's function is inadequate, it has decreased therapeutic activity in type 2 diabetes mellitus (T2DM). This study aimed to establish the effect of As on pioglitazone metabolism in patients with T2DM. METHODOLOGY Urine, water, and plasma samples from a healthy population (n = 11) and a population with T2DM (n = 20) were obtained. Samples were analyzed by fluorescence spectroscopy/hydride generation (As) and HPLC (pioglitazone). Additionally, CYP 3A4 and CYP 2C8 were studied by density functional theory (DFT). RESULTS The healthy and T2DM groups were exposed via drinking water to >0.010 ppm, Ka values with a factor of 4.7 higher, Cl 1.42 lower, and ABCt 1.26 times higher concerning the healthy group. In silico analysis (DFT) of CYP 3A4 and CYP 2C8 isoforms showed the substitution of the iron atom by As in the active sites of the enzymes. CONCLUSIONS The results indicate that the substitution of Fe for As modifies the enzymatic function of CYP 3A4 and CYP 2C8 isoforms, altering the metabolic process of CYP 2D6 and CYP 3A4 in patients with T2DM. Consequently, the variation in metabolism alters the bioavailability of pioglitazone and the expected final effect.
Collapse
Affiliation(s)
| | - Patricia Ponce-Peña
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango 34120, Mexico
| | - José Manuel Salas-Pacheco
- Instituto de Investigaciones Científicas, Universidad Juárez del Estado de Durang, Durango 34000, Mexico
| | - Abelardo Camacho-Luis
- Centro de Investigación en Alimentos y Nutrición, Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durang, Durango 34000, Mexico
| | | | - Guillermo Nieto-Delgado
- Departamento de Físico-Matemáticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico
| | - Olga Dania López-Guzmán
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango 34120, Mexico
| | | |
Collapse
|
4
|
Dietary Inflammatory Nutrients and Esophageal Squamous Cell Carcinoma Risk: A Case-Control Study. Nutrients 2022; 14:nu14235179. [PMID: 36501209 PMCID: PMC9737973 DOI: 10.3390/nu14235179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
We conducted a case-control study (532 cases and 532 control) in Chinese adults to investigate the independent and interactive effects of dietary nutrients (pro- or anti-inflammation) on Esophageal Squamous Cell Carcinoma (ESCC) risk. Dietary data were collected using a food questionnaire survey that included 171 items. Two algorithms, the Least Absolute Shrinkage and Selector Operation (LASSO) and Bayesian Kernel Machine Regression (BKMR) were employed to select indicators and evaluate the interactive effect of nutrients' mixture on ESCC risk. Thirteen nutrients were selected, including three pro-inflammatory nutrients (protein, fat and carbohydrate) and ten anti-inflammatory nutrients (fiber, Vitamin A, riboflavin, niacin, Vitamin C, Fe, Se, MUFA, n-3 PUFA and n-6 PUFA). Single-exposure effects of fat, carbohydrate and fiber significantly contributed to ESCC risk. The pro-inflammatory nutrients' submodel discovered that the combined effect was statistically associated with increased ESCC risk. In addition, a higher fat level was significantly associated with ESCC risk. On the contrary, for fiber and riboflavin, the anti-inflammatory nutrients' submodel delineated a significant negative effect on the risk of ESCC. Our result implies that dietary nutrients and their inflammatory traits significantly impacted ESCC occurrence. Additional studies are warranted to verify our findings.
Collapse
|
5
|
Pérez-Torres I, Gutiérrez-Alvarez Y, Guarner-Lans V, Díaz-Díaz E, Manzano Pech L, Caballero-Chacón SDC. Intra-Abdominal Fat Adipocyte Hypertrophy through a Progressive Alteration of Lipolysis and Lipogenesis in Metabolic Syndrome Rats. Nutrients 2019; 11:nu11071529. [PMID: 31284400 PMCID: PMC6683042 DOI: 10.3390/nu11071529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the progressive participation of enzymes involved in lipolysis and lipogenesis, leading to adipocyte hypertrophy in a metabolic syndrome (MS) rat model caused by chronic consumption of 30% sucrose in drinking water. A total of 70 male Wistar rats were divided into two groups: C and MS. Each of these groups were then subdivided into five groups which were sacrificed as paired groups every month from the beginning of the treatment until 5 months. The intra-abdominal fat was dissected, and the adipocytes were extracted. Lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), protein kinases A (PKA), and perilipin A expressions were determined. The LPL and HSL activities were evaluated by spectrophotometry. Histological staining was performed in adipose tissue. Significant increases were observed in blood pressure, HOMA-IR, leptin, triglycerides, insulin, intra-abdominal fat, and number of fat cells per field (p = 0.001) and in advanced glycosylation products, adipocyte area, LPL, HSL activities and/or expression (p ≤ 0.01) in the MS groups progressively from the third month onward. Lipogenesis and lipolysis were increased by LPL activity and HSL activity and/or expression. This was associated with hyperinsulinemia and release of non-esterified fatty acids causing a positive feedback loop that contributes to the development of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico.
| | - Yolanda Gutiérrez-Alvarez
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico
| | - Linaloe Manzano Pech
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Sara Del Carmen Caballero-Chacón
- Facultad de Medicina y Veterinaria y Zootecnia, Department of Physiology and Pharmacology UNAM, Av. Universidad 3000, Coyoacán, México City 04510, Mexico
| |
Collapse
|
6
|
de Moura e Dias M, Pais Siqueira N, Lopes da Conceição L, Aparecida dos Reis S, Xavier Valente F, Maciel dos Santos Dias M, de Oliveira Barbosa Rosa C, Oliveira de Paula S, da Matta SLP, Licursi de Oliveira L, Bressan J, Gouveia Peluzio MDC. Consumption of virgin coconut oil in Wistar rats increases saturated fatty acids in the liver and adipose tissue, as well as adipose tissue inflammation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
Torres-Villalobos G, Hamdan-Pérez N, Díaz-Villaseñor A, Tovar AR, Torre-Villalvazo I, Ordaz-Nava G, Morán-Ramos S, Noriega LG, Martínez-Benítez B, López-Garibay A, Torres-Landa S, Ceballos-Cantú JC, Tovar-Palacio C, Figueroa-Juárez E, Hiriart M, Medina-Santillán R, Castillo-Hernández C, Torres N. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats. Physiol Rep 2017; 4:4/17/e12909. [PMID: 27582062 PMCID: PMC5027344 DOI: 10.14814/phy2.12909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
Long‐term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet‐induced obesity (DIO) rat models: one using a high‐fat diet (HFD) and the other using a high‐carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum‐free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model.
Collapse
Affiliation(s)
- Gonzalo Torres-Villalobos
- Depto. de Cirugía, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico Depto. de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Nashla Hamdan-Pérez
- Depto. de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Andrea Díaz-Villaseñor
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando R Tovar
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Ivan Torre-Villalvazo
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Guillermo Ordaz-Nava
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Sofía Morán-Ramos
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Lilia G Noriega
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Depto. de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Alejandro López-Garibay
- Depto. de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Samuel Torres-Landa
- Depto. de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Juan C Ceballos-Cantú
- Depto. de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Claudia Tovar-Palacio
- Depto. de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Elizabeth Figueroa-Juárez
- Depto. de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - Marcia Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Medina-Santillán
- Departamento de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Carmen Castillo-Hernández
- Departamento de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Nimbe Torres
- Depto. de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Tlalpan, Mexico City, Mexico
| |
Collapse
|
8
|
Velázquez-Villegas LA, Tovar-Palacio C, Palacios-González B, Torres N, Tovar AR, Díaz-Villaseñor A. Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/24/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Laura A. Velázquez-Villegas
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Claudia Tovar-Palacio
- Departmento de Nefrología y Metabolismo Mineral; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Berenice Palacios-González
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Nimbe Torres
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Armando R. Tovar
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Andrea Díaz-Villaseñor
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
- Departmento de Medicina Genómica y Toxicología Ambiental; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
9
|
Lieder B, Zaunschirm M, Holik AK, Ley JP, Hans J, Krammer GE, Somoza V. The Alkamide trans-Pellitorine Targets PPARγ via TRPV1 and TRPA1 to Reduce Lipid Accumulation in Developing 3T3-L1 Adipocytes. Front Pharmacol 2017; 8:316. [PMID: 28620299 PMCID: PMC5449966 DOI: 10.3389/fphar.2017.00316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue is an important endocrine organ in the human body. However, pathological overgrowth is associated with chronic illness. Regulation of adipogenesis and maturation of adipocytes via bioactive compounds in our daily diet has been in focus of research in the past years and showed promising results for agonists of the ion channels transient receptor potential channel (TRP) V1 and A1. Here, we investigated the anti-adipogenic potential and underlying mechanisms of the alkamide trans-pellitorine present in Piper nigrum via TRPV1 and TRPA1 in 3T3-L1 cells. trans-pellitorine was found to suppress mean lipid accumulation, when applied during differentiation and maturation, but also during maturation phase solely of 3T3-L1 cells in a concentration range between 1 nM and 1 μM by up to 8.84 ± 4.97 or 7.49 ± 5.08%, respectively. Blockage of TRPV1 using the specific inhibitor trans-tert-butyl-cyclohexanol demonstrated that the anti-adipogenic activity of trans-pellitorine depends on TRPV1. In addition, blockage of the TRPA1 channel using the antagonist AP-18 showed a TRPA1-dependent signaling in the early to intermediate stages of adipogenesis. On a mechanistic level, treatment with trans-pellitorine during adipogenesis led to reduced PPARγ expression on gene and protein level via activation of TRPV1 and TRPA1, and increased expression of the microRNA mmu-let-7b, which has been associated with reduced PPARγ levels. In addition, cells treated with trans-pellitorine showed decreased expression of the gene encoding for fatty acid synthase, increased expression of microRNA-103 and a decreased short-term fatty acid uptake on the functional level. In summary, these data point to an involvement of the TRPV1 and TRPA1 cation channels in the anti-adipogenic activity of trans-pellitorine via microRNA-let7b and PPARγ. Since trans-pellitorine does not directly activate TRPV1 or TRPA1, an indirect modulation of the channel activity is assumed and warrants further investigation.
Collapse
Affiliation(s)
- Barbara Lieder
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of ViennaVienna, Austria
| | - Mathias Zaunschirm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of ViennaVienna, Austria
| | - Ann-Katrin Holik
- Department for Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
| | | | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of ViennaVienna, Austria.,Department for Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
| |
Collapse
|
10
|
Rohm B, Holik AK, Kretschy N, Somoza MM, Ley JP, Widder S, Krammer GE, Marko D, Somoza V. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J Cell Biochem 2016; 116:1153-63. [PMID: 25704235 PMCID: PMC4949678 DOI: 10.1002/jcb.25052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023]
Abstract
Red pepper and its major pungent principle, capsaicin (CAP), have been shown to be effective anti‐obesity agents by reducing energy intake, enhancing energy metabolism, decreasing serum triacylglycerol content, and inhibiting adipogenesis via activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the binding of CAP to the TRPV1 receptor is also responsible for its pungent sensation, strongly limiting its dietary intake. Here, the effects of a less pungent structural CAP‐analog, nonivamide, on adipogenesis and underlying mechanisms in 3T3‐L1 cells were studied. Nonivamide was found to reduce mean lipid accumulation, a marker of adipogenesis, to a similar extent as CAP, up to 10.4% (P < 0.001). Blockage of the TRPV1 receptor with the specific inhibitor trans‐tert‐butylcyclohexanol revealed that the anti‐adipogenic activity of nonivamide depends, as with CAP, on TRPV1 receptor activation. In addition, in cells treated with nonivamide during adipogenesis, protein levels of the pro‐adipogenic transcription factor peroxisome‐proliferator activated receptor γ (PPARγ) decreased. Results from miRNA microarrays and digital droplet PCR analysis demonstrated an increase in the expression of the miRNA mmu‐let‐7d‐5p, which has been associated with decreased PPARγ levels. J. Cell. Biochem. 116: 1153–1163, 2015. © 2015 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Althanstraße 14, 1090, Vienna, Austria; Department of Nutritional and Physiological Chemistry, Althanstraße 14, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats. Nutr Diabetes 2015; 5:e184. [PMID: 26619368 PMCID: PMC4672355 DOI: 10.1038/nutd.2015.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 02/01/2023] Open
Abstract
Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after refeeding. Conclusions: The short-term consumption of a HFD affected adiponectin localization in adipose tissue, thereby decreasing its secretion to a different magnitude depending on the dietary fat source. Evaluating the fasting serum concentration of adipokines was not sufficient to identify alterations in their secretion, whereas postprandial values provided additional information as dynamic indicators.
Collapse
|