1
|
Ahmadi-Hadad A, de Queiroz PCC, Schettini F, Giuliano M. Reawakening the master switches in triple-negative breast cancer: A strategic blueprint for confronting metastasis and chemoresistance via microRNA-200/205: A systematic review. Crit Rev Oncol Hematol 2024; 204:104516. [PMID: 39306311 DOI: 10.1016/j.critrevonc.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits a proclivity for early recurrence and development of metastasis. Moreover, drug resistance tends to arise few months following chemotherapeutic regimen with agents such as Doxorubicin, Paclitaxel, Docetaxel, and Cisplatin. miR-200 family and miR-205 are considered key regulators of metastasis by regulating the Epithelial-to-mesenchymal transition (EMT) via inhibiting ZEB1. Therefore, these microRNAs may offer therapeutic applications. Moreover, they hold potential for inhibiting chemoresistance and increasing chemosensitivity. These microRNAs are suppressed in TNBC cells. Increasing their levels, however, can inhibit EMT and improve progression-free survival (PFS). Besides using direct miRNA therapy via viral vectors, some drugs like Acetaminophen, or Tamoxifen are deemed useful for TNBC due to their ability to upregulate these miRNAs. In this review, by conducting an advanced search on PubMed, Embase, and Medline and selecting pertinent studies, we aimed to explore the potential applications of these microRNAs in controlling EMT and overcoming chemoresistance.
Collapse
Affiliation(s)
- Armia Ahmadi-Hadad
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | | | - Francesco Schettini
- Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain, University of Barcelona, Barcelona, Spain.
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
He H, Li T. Pterostilbene exerts anti-lung squamous cell carcinoma function by suppressing the level of KANK3. Chem Biol Drug Des 2024; 104:e14597. [PMID: 39044124 DOI: 10.1111/cbdd.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Early detection of lung squamous cell carcinoma (LUSC) has a significant impact on clinical outcomes, and pterostilbene (PT) is a natural compound with promising anti-oncogenic activities. This study aimed to identify potential LUSC biomarkers through a series of bioinformatic analyses and clinical verification and explored the interaction between PT and selected biomarkers during the treatment of LUSC. The analysis of the expression profile of the clinical samples of LUSC was performed to identify dysexpressed genes (DEGs) and validated by IHC. The role of KANK3 in the anti-LUSC effects of PT was assessed with a series of in vitro and in vivo assays. 4335 DEGs were identified, including 1851 upregulated genes and 2484 downregulated genes. Survival analysis showed that KANK3 was significantly higher in patients with LUSC with an advanced tumor stage. In in vitro assays, PT suppressed cell viability, induced apoptosis, and inhibited migration and invasion in LUSC cell lines, which was associated with downregulation of KANK3. After the reinduction of the KANK3 level in LUSC cells, the anti-LUSC function of PT was impaired. In mice model, reinduction of KANK3 increased tumor growth and metastasis even under the treatment of PT. The findings outlined in the current study indicated that PT exerted anti-LUSC function in a KANK3 inhibition-dependent manner.
Collapse
MESH Headings
- Stilbenes/pharmacology
- Stilbenes/chemistry
- Stilbenes/therapeutic use
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Animals
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Mice
- Cell Line, Tumor
- Apoptosis/drug effects
- Cell Movement/drug effects
- Mice, Nude
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Male
- Female
- Mice, Inbred BALB C
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Cell Survival/drug effects
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/antagonists & inhibitors
- Down-Regulation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Hua He
- Department of Respiratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Li
- Department of Respiratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu P, Tang W, Xiang K, Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol 2024; 14:1323377. [PMID: 38259272 PMCID: PMC10800393 DOI: 10.3389/fphar.2023.1323377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kali Xiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
4
|
Aly S, El-Kamel AH, Sheta E, El-Habashy SE. Chondroitin/Lactoferrin-dual functionalized pterostilbene-solid lipid nanoparticles as targeted breast cancer therapy. Int J Pharm 2023; 642:123163. [PMID: 37353100 DOI: 10.1016/j.ijpharm.2023.123163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer remains the leading cause of cancer-associated mortality in women. Research investigating novel therapeutic approaches is thus crucial, including phytotherapeutics. Pterostilbene (PTS) is a phytochemical agent with promising efficacy against breast cancer. Poor solubility, low bioavailability and chemical instability are major drawbacks compromising PTS functionality. Herein, novel PTS-loaded solid lipid nanoparticles (PTS-SLNs) were fabricated using the ultrasonication technique. Dual-functionalization with lactoferrin (Lf) and chondroitin-sulfate (CS; CS/Lf/PTS-SLNs) was adopted as active-targeting approach. CS/Lf/PTS-SLNs demonstrated nanoparticle-size (223.42 ± 18.71 nm), low PDI (0.33 ± 0.017), acceptable zeta potential (-11.85 ± 0.07 mV) and controlled release (72.93 ± 2.93% after 24 h). In vitro studies on triple-negative MDA-MB-231 revealed prominent cytotoxicity of CS/Lf/PTS-SLNs (2.63-fold IC50 reduction), higher anti-migratory effect and cellular uptake relative to PTS-solution. The in vivo anti-tumor efficacy in an orthotopic cancer model verified the superiority of CS/Lf/PTS-SLNs; achieving 2.4-fold decrease in tumor growth compared to PTS-solution. On the molecular level, CS/Lf/PTS-SLNs enhanced suppression of VEGF, down-regulated cyclin D1 and upregulated caspase-3 and BAX, compared to PTS-solution. Also, immunohistochemical assay confirmed the higher anti-tumorigenic effect of CS/Lf/PTS-SLNs (5.87-fold decrease in Bcl-2 expression) compared to PTS-solution. Our findings highlight CS/Lf/PTS-SLNs as a promising nanoplatform for phytotherapeutic targeted-breast cancer therapy.
Collapse
Affiliation(s)
- Sara Aly
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
5
|
Lv Y, Mou Y, Su J, Liu S, Ding X, Yuan Y, Li G, Li G. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: a network pharmacology-based analysis. Sci Rep 2023; 13:3816. [PMID: 36882618 PMCID: PMC9992681 DOI: 10.1038/s41598-023-30585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Resina Draconis (RD) is known as the "holy medicine for promoting blood circulation" and possesses antitumor properties against various types of cancer, including breast cancer (BC); however, the underlying mechanism is not well understood. To explore the potential mechanism of RD against BC using network pharmacology and experimental validation, data on bioactive compounds, potential targets of RD, and related genes of BC were obtained from multiple public databases. Gene Ontology (GO) and KEGG pathway analyses were performed via the DAVID database. Protein interactions were downloaded from the STRING database. The mRNA and protein expression levels and survival analysis of the hub targets were analyzed using the UALCAN, HPA, Kaplan‒Meier mapper, and cBioPortal databases. Subsequently, molecular docking was used to verify the selected key ingredients and hub targets. Finally, the predicted results of network pharmacology methods were verified by cell experiments. In total, 160 active ingredients were obtained, and 148 RD target genes for the treatment of BC were identified. KEGG pathway analysis indicated that RD exerted its therapeutic effects on BC by regulating multiple pathways. Of these, the PI3K-AKT pathway was indicated to play an important role. In addition, RD treatment of BC seemed to involve the regulation of hub targets that were identified based on PPI interaction network analysis. Validation in different databases showed that AKT1, ESR1, HSP90AA1, CASP3, SRC and MDM2 may be involved in the carcinogenesis and progression of BC and that ESR1, IGF1 and HSP90AA1 were correlated with worse overall survival (OS) in BC patients. Molecular docking results showed that 103 active compounds have good binding activity with the hub targets, among which flavonoid compounds were the most important active components. Therefore, the sanguis draconis flavones (SDF) were selected for subsequent cell experiments. The experimental results showed that SDF significantly inhibited the cell cycle and cell proliferation of MCF-7 cells through the PI3K/AKT pathway and induced MCF-7 cell apoptosis. This study has preliminarily reported on the active ingredients, potential targets, and molecular mechanism of RD against BC, and RD was shown to exert its therapeutic effects on BC by regulating the PI3K/AKT pathway and related gene targets. Importantly, our work could provide a theoretical basis for further study of the complex anti-BC mechanism of RD.
Collapse
Affiliation(s)
- Yana Lv
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yan Mou
- Yuxi Normal University, Yuxi, 653100, China
| | - Jing Su
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Shifang Liu
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Xuan Ding
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yin Yuan
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Ge Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Guang Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| |
Collapse
|
6
|
New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules 2022; 27:molecules27196316. [PMID: 36234852 PMCID: PMC9571692 DOI: 10.3390/molecules27196316] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Pterostilbene (PTS), a compound most abundantly found in blueberries, is a natural analog of resveratrol. Several plant species, such as peanuts and grapes, produce PTS. While resveratrol has been extensively studied for its antioxidant properties, recent evidence also points out the diverse therapeutic potential of PTS. Several studies have identified the robust pharmacodynamic features of PTS, including better intestinal absorption and elevated hepatic stability than resveratrol. Indeed, due to its higher bioavailability paired with reduced toxicity compared to other stilbenes, PTS has become an attractive drug candidate for the treatment of several disease conditions, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. This review article provides an extensive summary of the nutraceutical potential of PTS in various disease conditions while discussing the crucial mechanistic pathways implicated. In particular, we share insights from our studies about the Nrf2-mediated effect of PTS in diabetes and associated complications. Moreover, we elucidate the important sources of PTS and discuss in detail its pharmacokinetics and the range of formulations and routes of administration used across experimental studies and human clinical trials. Furthermore, this review also summarizes the strategies successfully used to improve dietary availability and the bio-accessibility of PTS.
Collapse
|
7
|
Levenson AS. Dietary stilbenes as modulators of specific miRNAs in prostate cancer. Front Pharmacol 2022; 13:970280. [PMID: 36091792 PMCID: PMC9449421 DOI: 10.3389/fphar.2022.970280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulated experimental data have suggested that natural plant products may be effective miRNA-modulating chemopreventive and therapeutic agents. Dietary polyphenols such as flavonoids, stilbenes, and lignans, among others, have been intensively studied for their miRNA-mediated cardioprotective, antioxidant, anti-inflammatory and anticancer properties. The aim of this review is to outline known stilbene-regulated miRNAs in cancer, with a special focus on the interplay between various miRNAs and MTA1 signaling in prostate cancer. MTA1 is an epigenetic reader and an oncogenic transcription factor that is overexpressed in advanced prostate cancer and metastasis. Not surprisingly, miRNAs that are linked to MTA1 affect cancer progression and the metastatic potential of cells. Studies led to the identification of MTA1-associated pro-oncogenic miRNAs, which are regulated by stilbenes such as resveratrol and pterostilbene. Specifically, it has been shown that inhibition of the activity of the MTA1 regulated oncogenic miR-17 family of miRNAs, miR-22, and miR-34a by stilbenes leads to inhibition of prostatic hyperplasia and tumor progression in mice and reduction of proliferation, survival and invasion of prostate cancer cells in vitro. Taken together, these findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
|
8
|
Hazafa A, Iqbal MO, Javaid U, Tareen MBK, Amna D, Ramzan A, Piracha S, Naeem M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol 2022; 24:432-445. [PMID: 34609675 DOI: 10.1007/s12094-021-02709-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Natural products, especially polyphenols (phenolic acids, lignans, and stilbenes) are suggested to be more potent anticancer drugs because of their no or less adverse effects, excess availability, high accuracy, and secure mode of action. In the present review, potential anticancer mechanisms of action of some polyphenols including phenolic acids, lignans, and stilbenes are discussed based on clinical, epidemiological, in vivo, and in vitro studies. The emerging evidence revealed that phenolic acids, lignans, and stilbenes induced apoptosis in the treatment of breast (MCF-7), colon (Caco-2), lung (SKLU-1), prostate (DU-145 and LNCaP), hepatocellular (hepG-2), and cervical (A-431) cancer cells, cell cycle arrest (S/G2/M/G1-phases) in gastric (MKN-45 and MKN-74), colorectal (HCT-116), bladder (T-24 and 5637), oral (H-400), leukemic (HL-60 and MOLT-4) and colon (Caco-2) cancer cells, and inhibit cell proliferation against the prostate (PC-3), liver (LI-90), breast (T47D and MDA-MB-231), colon (HT-29 and Caco-2), cervical (HTB-35), and MIC-1 cancer cells through caspase-3, MAPK, AMPK, Akt, NF-κB, Wnt, CD95, and SIRT1 pathways. Based on accumulated data, we suggested that polyphenols could be considered as a viable therapeutic option in the treatment of cancer cells in the near future.
Collapse
Affiliation(s)
- A Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - M O Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - U Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M B K Tareen
- College of Food Science & Technology, Huazhong Agricultural University, Huazhong, China
| | - D Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - A Ramzan
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - S Piracha
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - M Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
10
|
Lin TA, Lin WS, Chou YC, Nagabhushanam K, Ho CT, Pan MH. Oxyresveratrol inhibits human colon cancer cell migration through regulating epithelial-mesenchymal transition and microRNA. Food Funct 2021; 12:9658-9668. [PMID: 34664597 DOI: 10.1039/d1fo01920a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major cause of death in colorectal cancer (CRC) patients is metastasis. Moreover, lots of studies have emphasized that the epithelial-mesenchymal transition (EMT) is a pivotal step in metastasis. Both transforming growth factor beta (TGF-β) and dysregulation of microRNAs (miRNAs) can induce or regulate EMT, promoting the loss of intercellular adhesion and increased motility of cancer cells. Therefore, it is necessary to prevent or inhibit the metastasis of colorectal cancer. Relatively little is known about the anti-metastatic effect of oxyresveratrol (OXY), a natural derivative of resveratrol (RES), compared to RES. Accordingly, RES was used as the positive control to investigate the effects of OXY on colon cancer cell migration. The results showed that OXY could significantly inhibit cell migration (67.17% ± 0.04, 64.89% ± 0.04) compared to RES (84.6% ± 0.07, 76.34% ± 0.08) in HCT116 cells and TGF-β-induced HT-29 cells, respectively, via Snail/E-cadherin expression. In addition, OXY improved EMT-related miRNA expression through, for example, lowering the levels of miR-3687 and miR-301a-3p while upregulating miR-3612 in TGF-β-induced HT-29 cells. In conclusion, OXY inhibits human colon cancer cell migration by regulating EMT and miRNAs. Based on these findings, it can be stated that OXY promotes anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Ting-Ann Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Sheng Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ya-Chun Chou
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Min-Hisung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Koh YC, Ho CT, Pan MH. Recent Advances in Health Benefits of Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10036-10057. [PMID: 34460268 DOI: 10.1021/acs.jafc.1c03699] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biological targeting or molecular targeting is the main strategy in drug development and disease prevention. However, the problem of "off-targets" cannot be neglected. Naturally derived drugs are preferred over synthetic compounds in pharmaceutical markets, and the main goals are high effectiveness, lower cost, and fewer side effects. Single-target drug binding may be the major cause of failure, as the pathogenesis of diseases is predominantly multifactorial. Naturally derived drugs are advantageous because they are expected to have multitarget effects, but not off-targets, in disease prevention or therapeutic actions. The capability of phytochemicals to modulate molecular signals in numerous diseases has been widely discussed. Among them, stilbenoids, especially resveratrol, have been well-studied, along with their potential molecular targets, including AMPK, Sirt1, NF-κB, PKC, Nrf2, and PPARs. The analogues of resveratrol, pterostilbene, and hydroxylated-pterostilbene may have similar, if not more, potential biological targeting effects compared with their original counterpart. Furthermore, new targets that have been discussed in recent studies are reviewed in this paper.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan 404
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan 413
| |
Collapse
|
12
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
13
|
Surien O, Ghazali AR, Masre SF. Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model. Sci Rep 2021; 11:14862. [PMID: 34290382 PMCID: PMC8295275 DOI: 10.1038/s41598-021-94508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest.
Collapse
Affiliation(s)
- Omchit Surien
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Taefehshokr S, Taefehshokr N, Derakhshani A, Baghbanzadeh A, Astamal RV, Safaei S, Abbasi S, Hajazimian S, Maroufi NF, Isazadeh A, Hajiasgharzadeh K, Baradaran B. The regulatory role of pivotal microRNAs in the AKT signaling pathway in breast cancer. Curr Mol Med 2021; 22:263-273. [PMID: 34238182 DOI: 10.2174/1566524021666210708095051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women, and it remains the main challenge despite improved treatments. MicroRNAs (miRNAs) are a small non-coding family of RNAs that play an indispensable role in regulating major physiological processes, including differentiation, proliferation, invasion, migration, cell cycle regulation, stem cell maintenance, apoptosis, and organ development. The dysregulation of these tiny molecules is associated with various human malignancies. More than 50% of these non-coding RNA sequences estimated have been placed on genomic regions or fragile sites linked to cancer. Following the discovery of the first signatures of specific miRNA in breast cancer, numerous researches focused on involving these tiny RNAs in breast cancer physiopathology as a new therapeutic approach or as reliable prognostic biomarkers. In the current review, we focus on recent findings related to the involvement of miRNAs in breast cancer via the AKT signaling pathway and the related clinical implications.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, United Kingdom
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samane Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Pterostilbene in Cancer Therapy. Antioxidants (Basel) 2021; 10:antiox10030492. [PMID: 33801098 PMCID: PMC8004113 DOI: 10.3390/antiox10030492] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures and possess antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene; PT) is a phytoalexin originally isolated from the heartwood of red sandalwood. As recently reported by our group, PT was shown to be effective in the treatment of melanoma. Counterintuitively, PT is not effective (cytotoxic) against melanoma in vitro, and only under in vivo conditions does PT display its anticancer activity. This study elucidated that PT can be effective against melanoma through the inhibition of adrenocorticotropic hormone production in the brain of a mouse, which weakens the Nrf2-dependent antioxidant defenses of melanoma and also pancreatic cancers. This results in both the inhibition of tumor growth and sensitization of the tumor to oxidative stress. Moreover, PT can promote cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 content, a known stabilizer of lysosomal membranes. In addition, the safety of PT administered i.v. has been evaluated in mice. PT was found to be pharmacologically safe because it showed no organ-specific or systemic toxicity (including tissue histopathologic examination and regular hematology and clinical chemistry data) even when administered i.v. at a high dose (30 mg/kg per day × 23 days). Moreover, new pharmacological advances are being developed to increase its bioavailability and, thereby, its bioefficacy. Therefore, although applications of PT in cancer therapy are just beginning to be explored, it represents a potential (and effective) adjuvant/sensitizing therapy which may improve the results of various oncotherapies. The aim of this review is to present and discuss the results that in our opinion best support the usefulness of PT in cancer therapy, making special emphasis on the in vivo evidence.
Collapse
|
16
|
Chen RJ, Wang YJ. Pterostilbene and cancer chemoprevention. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Analysis of genomics and immune infiltration patterns of epithelial-mesenchymal transition related to metastatic breast cancer to bone. Transl Oncol 2020; 14:100993. [PMID: 33333372 PMCID: PMC7736716 DOI: 10.1016/j.tranon.2020.100993] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This study aimed to design a weighted co-expression network and a breast cancer (BC) prognosis evaluation system using a specific whole-genome expression profile combined with epithelial-mesenchymal transition (EMT)-related genes; thus, providing the basis and reference for assessing the prognosis risk of spreading of metastatic breast cancer (MBC) to the bone. METHODS Four gene expression datasets of a large number of samples from GEO were downloaded and combined with the dbEMT database to screen out EMT differentially expressed genes (DEGs). Using the GSE20685 dataset as a training set, we designed a weighted co-expression network for EMT DEGs, and the hub genes most relevant to metastasis were selected. We chose eight hub genes to build prognostic assessment models to estimate the 3-, 5-, and 10-year survival rates. We evaluated the models' independent predictive abilities using univariable and multivariable Cox regression analyses. Two GEO datasets related to bone metastases from BC were downloaded and used to perform differential genetic analysis. We used CIBERSORT to distinguish 22 immune cell types based on tumor transcripts. RESULTS Differential expression analysis showed a total of 304 DEGs, which were mainly related to proteoglycans in cancer, and the PI3K/Akt and the TGF-β signaling pathways, as well as mesenchyme development, focal adhesion, and cytokine binding functionally. The 50 hub genes were selected, and a survival-related linear risk assessment model consisting of eight genes (FERMT2, ITGA5, ITGB1, MCAM, CEMIP, HGF, TGFBR1, F2RL2) was constructed. The survival rate of patients in the high-risk group (HRG) was substantially lower than that of the low-risk group (LRG), and the 3-, 5-, and 10-year AUCs were 0.68, 0.687, and 0.672, respectively. In addition, we explored the DEGs of BC bone metastasis, and BMP2, BMPR2, and GREM1 were differentially expressed in both data sets. In GSE20685, memory B cells, resting memory T cell CD4 cells, T regulatory cells (Tregs), γδ T cells, monocytes, M0 macrophages, M2 macrophages, resting dendritic cells (DCs), resting mast cells, and neutrophils exhibited substantially different distribution between HRG and LRG. In GSE45255, there was a considerable difference in abundance of activated NK cells, monocytes, M0 macrophages, M2 macrophages, resting DCs, and neutrophils in HRG and LRG. CONCLUSIONS Based on the weighted co-expression network for breast-cancer-metastasis-related DEGs, we screened hub genes to explore a prognostic model and the immune infiltration patterns of MBC. The results of this study provided a factual basis to bioinformatically explore the molecular mechanisms of the spread of MBC to the bone and the possibility of predicting the survival of patients.
Collapse
|
18
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
19
|
Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules 2020; 25:molecules25215166. [PMID: 33171952 PMCID: PMC7664215 DOI: 10.3390/molecules25215166] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pterostilbene is a natural 3,5-dimethoxy analog of resveratrol. This stilbene compound has a strong bioactivity and exists widely in Dalbergia and Vaccinium spp. Besides natural extraction, pterostilbene can be obtained by biosynthesis. Pterostilbene has become popular because of its remarkable pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammation, and neuroprotection. Pterostilbene can be rapidly absorbed and is widely distributed in tissues, but it does not seriously accumulate in the body. Pterostilbene can easily pass through the blood-brain barrier because of its low molecular weight and good liposolubility. In this review, the studies performed in the last three years on resources, synthesis, bioactivity, and pharmacokinetics of pterostilbene are summarized. This review focuses on the effects of pterostilbene on certain diseases to explore its targets, explain the possible mechanism, and look for potential therapeutic applications.
Collapse
|
20
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
21
|
Elsherbini AM, Sheweita SA, Sultan AS. Pterostilbene as a Phytochemical Compound Induces Signaling Pathways Involved in the Apoptosis and Death of Mutant P53-Breast Cancer Cell Lines. Nutr Cancer 2020; 73:1976-1984. [PMID: 32900227 DOI: 10.1080/01635581.2020.1817513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pterostilbene is a natural nonflavonoid polyphenolic compound. It shows a remarkable range of biological activities, including antiproliferative, antiinflammatory, and antioxidant activity. However, the mechanism of action of PT in breast cancer cells containing mutant p53 protein has not been fully elucidated. Therefore, the present study was aimed at investigating the influence of PT on signaling pathways involved in the apoptosis of mutant p53-breast cancer cell lines. Immunocytochemistry and Western Immunoblotting techniques were used in this study. The present data showed that the viabilities and the proliferations of MDA-MB-231 and T-47D decreased significantly (P < 0.001) after treatment with different concentrations of PT. In addition, the morphological characteristics of both cell lines were changed after treatment with PT. Decreased protein expression of mutant p53 (R280 K, L194F) in MDA-MB-231 and T-47D breast cancer cell lines has also been achieved. In addition, overexpression of pro-apoptotic (Bax) protein, caspase-3 activity and histone release were increased after treatment of both cell lines with different PT concentrations. Furthermore, the protein expressions of cyclin D1, mTOR, and oncogenic β-catenin were significantly downregulated after treatment of both cell lines with PT. In conclusion, downregulations of protein expression of mutant p53, cyclin D1, mTOR, and β-catenin were increased after both cell lines had been treated with pterostilbene. PT could point to a promising use against the development and the progression of breast cancer as a natural therapeutic agent.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.,Department of Clinical Biochemistry, King Khalid University, Abha, Saudi Arabia
| | - Ahmed S Sultan
- Department of Biochemistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
23
|
Chao TY, Satriyo P, Yeh CT, Chen JH, Aryandono T, Haryana S. Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple-negative breast cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2020. [DOI: 10.4103/jcrp.jcrp_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
25
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Bracht JWP, Karachaliou N, Berenguer J, Pedraz-Valdunciel C, Filipska M, Codony-Servat C, Codony-Servat J, Rosell R. Osimertinib and pterostilbene in EGFR-mutation-positive non-small cell lung cancer (NSCLC). Int J Biol Sci 2019; 15:2607-2614. [PMID: 31754333 PMCID: PMC6854375 DOI: 10.7150/ijbs.32889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022] Open
Abstract
Monotherapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) still leads to incomplete responses in most EGFR-mutation positive non-small cell lung cancer (NSCLC) patients, often due to acquired resistance through activation of parallel compensatory pathways. We have previously shown that co-targeting EGFR, signal transducer and activator of transcription 3 (STAT3), and Src-yes-associated protein 1 (YAP1) was highly synergistic in vitro and in vivo. In the present study, we treated EGFR-mutation positive cell lines with the combination of osimertinib plus a natural compound, pterostilbene, which has been reported to abrogate Src and STAT3 activation. Methods: Cell viability assays and immunoblotting were performed to reveal the mechanisms of action of pterostilbene, osimertinib and pterostilbene plus osimertinib in five EGFR-mutation positive NSCLC and one triple negative breast cancer (TNBC) cell lines. Results: Osimertinib plus pterostilbene yielded synergistic effects in all EGFR-mutation positive NSCLC cell lines investigated. Surprisingly, pterostilbene alone did not inhibit, nor downregulate Src phosphorylation in the EGFR-mutation positive NSCLC cell lines or the TNBC cell line, MDA-MB-231. However, the double combination of osimertinib plus pterostilbene reversed the osimertinib-induced STAT3, YAP1, and CUB domain-containing protein-1 (CDCP1) phosphorylation and slightly suppressed Src phosphorylation in PC9 and H1975 cells. Conclusion: The results of this study indicate that pterostilbene may be used to abrogate the activated resistance pathways of single osimertinib treatment in EGFR-mutation positive NSCLC. Future studies should focus on in vivo translation and confirmation of these results.
Collapse
Affiliation(s)
| | - Niki Karachaliou
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain.,Instituto Oncológico Dr Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
| | - Jordi Berenguer
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | | | - Martyna Filipska
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
| | - Carles Codony-Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony-Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain.,Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain.,Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
27
|
Ma Z, Zhang X, Xu L, Liu D, Di S, Li W, Zhang J, Zhang H, Li X, Han J, Yan X. Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies. Pharmacol Res 2019; 145:104265. [DOI: 10.1016/j.phrs.2019.104265] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/26/2022]
|
28
|
Yu CL, Yang SF, Hung TW, Lin CL, Hsieh YH, Chiou HL. Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis 2019; 10:418. [PMID: 31138785 PMCID: PMC6538697 DOI: 10.1038/s41419-019-1639-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the one of the most common cancers worldwide. Because the side effects of current treatments are severe, new effective therapeutic strategies are urgently required. Pterostilbene (PT), a natural analogue of resveratrol, has diverse pharmacologic activities, including antioxidative, anti-inflammatory and antiproliferative activities. Here we demonstrated that PT inhibits HCC cell growth without the induction of apoptosis in an endoplasmic reticulum (ER) stress- and autophagy-dependent manner. Mechanistic studies indicated that the combination of salubrinal and PT modulates ER stress-related autophagy through the phospho-eukaryotic initiation factor 2α/activating transcription factor-4/LC3 pathway, leading to a further inhibition of eIF2α dephosphorylation and the potentiation of cell death. An in vivo xenograft analysis revealed that PT significantly reduced tumour growth in mice with a SK-Hep-1 tumour xenograft. Taken together, our results yield novel insights into the pivotal roles of PT in ER stress- and autophagy-dependent cell death in HCC cells.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
29
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2019; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
31
|
Sinha N, Meher BR, Naik PP, Panda PK, Mukhapadhyay S, Maiti TK, Bhutia SK. p73 induction by Abrus agglutinin facilitates Snail ubiquitination to inhibit epithelial to mesenchymal transition in oral cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:179-190. [PMID: 30668428 DOI: 10.1016/j.phymed.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT), a key step in oral cancer progression, is associated with invasion, metastasis, and therapy resistance, thus targeting the EMT represents a critical therapeutic strategy for the treatment of oral cancer metastasis. Our previous study showed that Abrus agglutinin (AGG), a plant lectin, induces both intrinsic and extrinsic apoptosis to activate the tumor inhibitory mechanism. OBJECTIVE This study aimed to investigate the role of AGG in modulating invasiveness and stemness through EMT inhibition for the development of antineoplastic agents against oral cancer. METHODS The EMT- and stemness-related proteins were studied in oral cancer cells using Western blot analysis and fluorescence microscopy. The potential mechanisms of Snail downregulation through p73 activation in FaDu cells were evaluated using Western blot analysis, immunoprecipitation, confocal microscopy, and molecular docking analysis. Immunohistochemical staining of the tumor samples of AGG-treated FaDu-xenografted nude mice was performed. RESULTS At the molecular level, AGG-induced p73 suppressed Snail expression, leading to EMT inhibition in FaDu cells. Notably, AGG promoted the translocation of Snail from the nucleus to the cytoplasm in FaDu cells and triggered its degradation through ubiquitination. In this setting, AGG inhibited the interaction between Snail and p73 in FaDu cells, resulting in p73 activation and EMT inhibition. Moreover, in epidermal growth factor (EGF)-stimulated FaDu cells, AGG abolished the upregulation of extracellular signal-regulated kinase (ERK)1/2 that plays a pivotal role in the upregulation of Snail to regulate the EMT phenotypes. In immunohistochemistry analysis, FaDu xenografts from AGG-treated mice showed decreased expression of Snail, SOX2, and vimentin and increased expression of p73 and E-cadherin compared with the control group, confirming EMT inhibition as part of its anticancer efficacy against oral cancer. CONCLUSION In summary, AGG stimulates p73 in restricting EGF-induced EMT, invasiveness, and stemness by inhibiting the ERK/Snail pathway to facilitate the development of alternative therapeutics for oral cancer.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Biswa Ranjan Meher
- Centre for Life Science, Central University of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Subhadip Mukhapadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
32
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
33
|
Zhang X, Zhang J, Xu L, Ma Z, Di S, Gao Y, Li X, Yan X, Zhang H. [Emerging Actions of Pterostilebene on Cancer Research]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 21:931-936. [PMID: 30591102 PMCID: PMC6318568 DOI: 10.3779/j.issn.1009-3419.2018.12.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
紫檀芪(3, 5-二甲氧基-4’-羟基二苯乙烯)是一种主要存在于蓝莓、葡萄和花榈木中的多酚类化合物。已有的研究发现紫檀芪具有抗肺癌、乳腺癌、胃癌、结肠癌等多种肿瘤的抗癌作用。其作用机制涉及调控影响多种肿瘤生物学特性。此外,紫檀芪具有比白藜芦醇更高的生物利用度和生物活性,其抗肿瘤作用和机制值得深入探讨和研究。
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Clinical Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.,Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.,Battalion 5, the First Brigade of Cadets, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Liqun Xu
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.,Battalion 5, the First Brigade of Cadets, the Fourth Military Medical University, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Yuan Gao
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Hongmei Zhang
- Department of Clinical Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
34
|
Gu TT, Chen TY, Yang YZ, Zhao XJ, Sun Y, Li TS, Zhang DM, Kong LD. Pterostilbene alleviates fructose-induced renal fibrosis by suppressing TGF-β1/TGF-β type I receptor/Smads signaling in proximal tubular epithelial cells. Eur J Pharmacol 2019; 842:70-78. [DOI: 10.1016/j.ejphar.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
|
35
|
Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother 2018; 107:1648-1666. [DOI: 10.1016/j.biopha.2018.08.100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
|
36
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
37
|
Sugita B, Gill M, Mahajan A, Duttargi A, Kirolikar S, Almeida R, Regis K, Oluwasanmi OL, Marchi F, Marian C, Makambi K, Kallakury B, Sheahan L, Cavalli IJ, Ribeiro EM, Madhavan S, Boca S, Gusev Y, Cavalli LR. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 2018; 7:79274-79291. [PMID: 27813494 PMCID: PMC5346713 DOI: 10.18632/oncotarget.13024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.
Collapse
Affiliation(s)
- Bruna Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Akanskha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rodrigo Almeida
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Kenny Regis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Olusayo L Oluwasanmi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Fabio Marchi
- International Research Center-CIPE, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Catalin Marian
- The Ohio State University Comprehensive Cancer Center, Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio.,The University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Departments of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Laura Sheahan
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Enilze M Ribeiro
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Simina Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
38
|
Chen RJ, Kuo HC, Cheng LH, Lee YH, Chang WT, Wang BJ, Wang YJ, Cheng HC. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int J Mol Sci 2018; 19:ijms19010287. [PMID: 29346311 PMCID: PMC5796233 DOI: 10.3390/ijms19010287] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS) has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Hsiao-Che Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 707010, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40401, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
39
|
Lee PS, Chiou YS, Ho CT, Pan MH. Chemoprevention by resveratrol and pterostilbene: Targeting on epigenetic regulation. Biofactors 2018; 44:26-35. [PMID: 29220106 DOI: 10.1002/biof.1401] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms are essential in regulating normal cellular functions and play an important role during the disease developmental stages. However, aberrant epigenetic mechanisms may lead to pathological consequences such as cancer, neurological disorders, bone and skeletal diseases, cardiovascular dysfunction, and metabolic syndrome. The molecular mechanisms of epigenetic modification include DNA methylation, histone modification (acetylation, methylation and phosphorylation), and microRNAs (miRNAs). Unlike genetic modifications, epigenetic states of genes are reversible and can be altered by certain intrinsic and extrinsic factors. In the past few decades, accumulated evidence shows that dietary phytochemicals with chemopreventive effects are also potent epigenetic regulators. Resveratrol and pterostilbene are stilbenoids, which have been reported to have anti-cancer, anti-inflammatory, anti-lipid, and anti-diabetic properties. Stilbenoids are also reported to improve cardiovascular disease. By altering DNA methylation and histone modification or by modulating miRNA expression, resveratrol, and pterostilbene become potent epigenetic modifiers. In this review, we summarize these studies and underlying mechanisms of resveratrol and pterostilbene and their influence on epigenetic mechanisms. © 2017 BioFactors, 44(1):26-35, 2018.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
40
|
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martín-Pérez J. miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One 2017; 12:e0188637. [PMID: 29182685 PMCID: PMC5705145 DOI: 10.1371/journal.pone.0188637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022] Open
Abstract
miR205 has a dual activity, as tumor suppressor and as oncogene. Here we analyzed the impact of miR205 ectopic expression in the initial tumorigenic processes of SUM159PT, a triple negative breast cancer cell line with low endogenous levels of miR205. In SUM159PT, miR205 inhibited expression of its targets VEGFA, ErbB3, Zeb1, Fyn and Lyn A/B; it reduced cell proliferation, and Myc/cyclin D1 levels, while increased p27kip1 expression. miR205 abolished anchorage-independent growth, inhibited migration and invasion, Src-kinases/Stat3 axis activation, and levels of secreted MMP9. miR205 also reduced expression of CD44 and TAZ, E2A.E12, Twist, Snail1 and CK5, associated with epithelial-mesenchymal transition (EMT). Importantly, we show that miR205 inhibited SUM159PT cancer-stem cell renewal, expression in mammospheres of CD44 and ALDH1 stem-cell markers, TAZ, and E2A.E12. All these effects of miR205 were reverted by Anti-miR205 co-expression, demonstrating its specificity. Thus, all these results strongly suggest that ectopic expression of miR205 in SUM159PT affected several parameters associated with initial steps of tumorigenesis.
Collapse
Affiliation(s)
- Víctor Mayoral-Varo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - Annarica Calcabrini
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - María Pilar Sánchez-Bailón
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - Jorge Martín-Pérez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
42
|
Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer. Cancers (Basel) 2017; 9:cancers9080101. [PMID: 28771186 PMCID: PMC5575604 DOI: 10.3390/cancers9080101] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Despite major advances, non-small cell lung cancer (NSCLC) remains the major cause of cancer-related death in developed countries. Metastasis and drug resistance are the main factors contributing to relapse and death. Epithelial-to-mesenchymal transition (EMT) is a complex molecular and cellular process involved in tissue remodelling that was extensively studied as an actor of tumour progression, metastasis and drug resistance in many cancer types and in lung cancers. Here we described with an emphasis on NSCLC how the changes in signalling pathways, transcription factors expression or microRNAs that occur in cancer promote EMT. Understanding the biology of EMT will help to define reversing process and treatment strategies. We will see that this complex mechanism is related to inflammation, cell mobility and stem cell features and that it is a dynamic process. The existence of intermediate phenotypes and tumour heterogeneity may be debated in the literature concerning EMT markers, EMT signatures and clinical consequences in NSCLC. However, given the role of EMT in metastasis and in drug resistance the development of EMT inhibitors is an interesting approach to counteract tumour progression and drug resistance. This review describes EMT involvement in cancer with an emphasis on NSCLC and microRNA regulation.
Collapse
|
43
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
44
|
Hilborn E, Stål O, Alexeyenko A, Jansson A. The regulation of hydroxysteroid 17β-dehydrogenase type 1 and 2 gene expression in breast cancer cell lines by estradiol, dihydrotestosterone, microRNAs, and genes related to breast cancer. Oncotarget 2017; 8:62183-62194. [PMID: 28977936 PMCID: PMC5617496 DOI: 10.18632/oncotarget.19136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/01/2017] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the influence of estrogen, androgen, microRNAs, and genes implicated in breast cancer on the expression of HSD17B1 and HSD17B2. MATERIALS Breast cancer cell lines ZR-75-1, MCF7, T47D, SK-BR-3, and the immortalized epithelial cell line MCF10A were used. Cells were treated either with estradiol or dihydrotestosterone for 6, 24, 48 hours, or 7 days or treated with miRNAs or siRNAs predicted to influence HSD17B expression Results and discussion. Estradiol treatment decreased HSD17B1 expression and had a time-dependent effect on HSD17B2 expression. This effect was lost in estrogen receptor-α down-regulated or negative cell lines. Dihydrotestosterone treatment increased HSD17B2 expression, with limited effect on HSD17B1 expression. No effect was seen in cells without AR or in combination with the AR inhibitor hydroxyflutamide. The miRNA-17 up-regulated HSD17B1, while miRNA-210 and miRNA-7-5p had up- and down-regulatory effect and miRNA-1304-3p reduced HSD17B1 expression. The miRNA-204-5p, 498, 205-3p and 579-3p reduced HSD17B2 expression. Downregulation of CX3CL1, EPHB6, and TP63 increased HSD17B1 and HSD17B2 expression, while GREB1 downregulation suppressed HSD17B1 and promoted HSD17B2 expression. CONCLUSION We show that HSD17B1 and HSD17B2 are controlled by estradiol, dihydrotestosterone, and miRNAs, as well as modulated by several breast cancer-related genes, which could have future clinical applications.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
45
|
Pei HL, Mu DM, Zhang B. Anticancer Activity of Pterostilbene in Human Ovarian Cancer Cell Lines. Med Sci Monit 2017; 23:3192-3199. [PMID: 28664898 PMCID: PMC5503231 DOI: 10.12659/msm.901833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is a major cause of mortality in women and one of the most common gynecologic disorders. Pterostilbene (PTS), a trans-3,5-dimethoxy-4'-hydroxystilbene, was chosen for this work due to its reported effectiveness as a chemotherapeutic agent in cancer studies. In this work, we studied underlying molecular mechanisms of PTS treatment in various ovarian cancer cell lines such as OVCAR8, OV1063, IGROV-1, and SKOV3. MATERIAL AND METHODS We used the cytometric bead array (CBA) method and real-time PCR analysis to analyze the secretion level of tumor necrosis factor alpha (TNF-α) and to measure the TNF-α mRNA expression. NF-kappa B (NF-κB) promoter analysis, Western blot analysis, electrophoresis mobility shift assay (EMSA), and immunostaining analyses were performed to measure the NF-κB activity and other relative proteins levels. RESULTS The PTS treatment decreased the release of TNF-α in IGROV-1 ovarian cancer cells. It also showed significant inhibitory effect on nuclear NF-κB p50, and NF-κB p65 protein levels. CONCLUSIONS From the results obtained, we suggest that PTS has the potential to treat ovarian cancer by reducing the level of TNF-α cytokine and to have a limited effect on NF-κB, AKT, and ERK signaling pathways.
Collapse
Affiliation(s)
- Hui-lin Pei
- Department of Obstetrics, General Hospital of Daqing Oilfield, Daqing, Heilongjiang, P.R. China
| | - Dan-mei Mu
- Department of Science and Education, General Hospital of Daqing Oilfield, Daqing, Heilongjiang, P.R. China
| | - Bin Zhang
- Department of Science and Education, General Hospital of Daqing Oilfield, Daqing, Heilongjiang, P.R. China
| |
Collapse
|
46
|
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403:15-26. [PMID: 28662290 DOI: 10.1111/nyas.13372] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
Affiliation(s)
- Avinash Kumar
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, Oxford, Mississippi
| | - Anait S Levenson
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| |
Collapse
|
47
|
Azzolini M, Mattarei A, La Spina M, Fanin M, Chiodarelli G, Romio M, Zoratti M, Paradisi C, Biasutto L. New natural amino acid-bearing prodrugs boost pterostilbene's oral pharmacokinetic and distribution profile. Eur J Pharm Biopharm 2017; 115:149-158. [PMID: 28254379 DOI: 10.1016/j.ejpb.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
The biomedical effects of the natural phenol pterostilbene are of great interest but its bioavailability is negatively affected by the phenolic group in position 4' which is an ideal target for the conjugative enzymes of phase II metabolism. We report the synthesis and characterization of prodrugs in which the hydroxyl moiety is reversibly protected as a carbamate ester linked to the N-terminus of a natural amino acid. Prodrugs comprising amino acids with hydrophobic side chains were readily absorbed after intragastric administration to rats. The Area Under the Curve for pterostilbene in blood was optimal when prodrugs with isoleucine or β-alanine were used. The prodrug incorporating isoleucine was used for further studies to map distribution into major organs. When compared to pterostilbene itself, administration of the isoleucine prodrug afforded increased absorption, reduced metabolism and higher concentrations of pterostilbene, sustained for several hours, in most of the organs examined. Experiments using Caco-2 cells as an in vitro model for human intestinal absorption suggest that the prodrug could have promising absorption profiles also in humans; its uptake is partly due to passive diffusion, and partly mediated by H+-dependent transporters expressed on the apical membrane of enterocytes, such as PepT1 and OATP.
Collapse
Affiliation(s)
- Michele Azzolini
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Mattarei
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Martina La Spina
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Fanin
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Giacomo Chiodarelli
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Matteo Romio
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Cristina Paradisi
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
48
|
Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo. Int J Mol Sci 2016; 17:ijms17111927. [PMID: 27869675 PMCID: PMC5133923 DOI: 10.3390/ijms17111927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.
Collapse
|
49
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
50
|
Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo HW, Carpenter RL, Metheny-Barlow LJ, Zhou X, Qasem SA, Pasche B, Watabe K. Activation of the c-Met Pathway Mobilizes an Inflammatory Network in the Brain Microenvironment to Promote Brain Metastasis of Breast Cancer. Cancer Res 2016; 76:4970-80. [PMID: 27364556 DOI: 10.1158/0008-5472.can-15-3541] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/20/2016] [Indexed: 01/14/2023]
Abstract
Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remain poorly understood. Here, we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle that generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. Cancer Res; 76(17); 4970-80. ©2016 AACR.
Collapse
Affiliation(s)
- Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Linda J Metheny-Barlow
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Shadi A Qasem
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|