1
|
González-Alva P, Solís-Suárez DL, Cifuentes-Mendiola SE, García-Hernández AL. A diet rich in omega-3 fatty acid improves periodontitis and tissue destruction by MMP2- and MMP9-linked inflammation in a murine model. Odontology 2024; 112:185-199. [PMID: 37378834 PMCID: PMC10776722 DOI: 10.1007/s10266-023-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Periodontitis is an oral-cavity inflammatory disease and is the principal cause associated with tooth loss. Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are important proteases involved in periodontal tissue destruction. The omega-3 polyunsaturated fatty acids (ω-3 PUFA) have been demonstrated to possess immunoregulatory properties in periodontitis. The aim of the study was to investigate the effects of ω-3 PUFA on inflammation and on the expression of MMP-2 and -9 in a murine periodontitis model. Twenty-four male C57BL/6 mice were divided into control mice (Control), control mice treated with ω-3 PUFA (O3), mice with periodontitis (P), and mice with periodontitis treated with ω-3 PUFA (P + O3). ω-3 PUFA were administered orally once a day for 70 days. Periodontitis in mice was induced by Porphyromonas gingivalis-infected ligature placement around the second maxillary molar. The mice were sacrificed, and blood and maxillary samples were collected. Flow cytometry was used to quantify tumor necrosis factor-alpha (TNFα), interleukin (IL)-2, IL-4, IL-5, and interferon-gamma. Histologic analysis and immunohistochemistry for MMP-2 and -9 were performed. The data were statistically evaluated using analysis of variance (ANOVA) and the Tukey post hoc test. Histological analysis showed that ω-3 PUFA supplementation prevented inflammation and tissue destruction and revealed that bone destruction was more extensive in the P group than in the P + O3 group (p < 0.05). Also, it decreased the serum expressions of TNFα and IL-2 and the tissue expression of MMP-2 and -9 in the periodontitis-induced model (p < 0.05). ω-3 PUFA supplementation prevented alveolar bone loss and periodontal destruction, probably by decreasing the expression of MMP-2 and MMP-9 and its immunoregulatory properties.
Collapse
Affiliation(s)
- Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Laura Solís-Suárez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico.
| |
Collapse
|
2
|
Smith LA, Craven DM, Rainey MA, Cozzo AJ, Carson MS, Glenny EM, Sheth N, McDonell SB, Rezeli ET, Montgomery SA, Bowers LW, Coleman MF, Hursting SD. Separate and combined effects of advanced age and obesity on mammary adipose inflammation, immunosuppression and tumor progression in mouse models of triple negative breast cancer. Front Oncol 2023; 12:1031174. [PMID: 36686775 PMCID: PMC9846347 DOI: 10.3389/fonc.2022.1031174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Advanced age and obesity are independent risk and progression factors for triple negative breast cancer (TNBC), which presents significant public health concerns for the aging population and its increasing burden of obesity. Due to parallels between advanced age- and obesityrelated biology, particularly adipose inflammation, we hypothesized that advanced age and obesity each accelerate mammary tumor growth through convergent, and likely interactive, mechanisms. Methods To test this hypothesis, we orthotopically transplanted murine syngeneic TNBC cells into the mammary glands of young normoweight control (7 months), young diet-induced obese (DIO), aged normoweight control (17 months), and aged DIO female C57BL/6J mice. Results Here we report accelerated tumor growth in aged control and young DIO mice, compared with young controls. Transcriptional analyses revealed, with a few exceptions, overlapping patterns of mammary tumor inflammation and tumor immunosuppression in aged control mice and young DIO mice, relative to young controls. Moreover, aged control and young DIO tumors, compared with young controls, had reduced abundance ofcytotoxic CD8 T cells. Finally, DIO in advanced age exacerbated mammary tumor growth, inflammation and tumor immunosuppression. Discussion These findings demonstrate commonalities in the mechanisms driving TNBC in aged and obese mice, relative to young normoweight controls. Moreover, we found that advanced age and DIO interact to accelerate mammary tumor progression. Given the US population is getting older and more obese, age- and obesity-related biological differences will need to be considered when developing mechanism-based strategies for preventing or controlling breast cancer.
Collapse
Affiliation(s)
- Laura A. Smith
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dalton M. Craven
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Magdalena A. Rainey
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nishita Sheth
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shannon B. McDonell
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura W. Bowers
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Li W, Yao Y, Weng X, Yue X, Li F. α-Linolenic acid induced TM4 Sertoli cells proliferation and enhanced total antioxidant capacity. Anim Biotechnol 2022; 33:1582-1587. [PMID: 33938783 DOI: 10.1080/10495398.2021.1919130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study was undertaken to elucidate the direct ALA effects on mice TM4 Sertoli cells proliferation in vitro. Our results showed that TM4 cells viability was significantly stimulated by ALA (p < 0.05). The 50 μM ALA increased the concentration of total antioxidant capacity, induced the mitochondrial membrane hyperpolarized, and markedly decreased the number of apoptosis cells (p < 0.05). ALA also up-regulated G2/Mitotic-specific cyclin-B1 gene and apoptosis suppressive gene Bcl2 expression (p < 0.05). In conclusion, those results indicated that ALA could increase TM4 Sertoli cells antioxidant capacity, induced the mitochondrial membrane hyperpolarized, inhibited cells apoptosis and stimulated TM4 Sertoli cells proliferation in vitro.
Collapse
Affiliation(s)
- Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yongyu Yao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Gansu Runmu Biological Engineering Co., Ltd., Yongchang, China.,Biotechnology Engineering Laboratory of Gansu Meat Sheep Breeding, Minqin, China
| |
Collapse
|
4
|
Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019; 20:ijms20205028. [PMID: 31614433 PMCID: PMC6834330 DOI: 10.3390/ijms20205028] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sara L Svahn
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
5
|
Duffney PF, Falsetta ML, Rackow AR, Thatcher TH, Phipps RP, Sime PJ. Key roles for lipid mediators in the adaptive immune response. J Clin Invest 2018; 128:2724-2731. [PMID: 30108196 DOI: 10.1172/jci97951] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is an underlying feature of many diseases, including chronic obstructive pulmonary disease, rheumatoid arthritis, asthma, and multiple sclerosis. There is an increasing appreciation of the dysregulation of adaptive immunity in chronic inflammatory and allergic diseases. The discovery of specialized pro-resolving lipid mediators (SPMs) that actively promote the resolution of inflammation has opened new avenues for the treatment of chronic inflammatory diseases. Much work has been done focusing on the impact of SPMs on innate immune cells. However, much less is known about the influence of SPMs on the development of antigen-specific adaptive immune responses. This Review highlights the important breakthroughs concerning the effects of SPMs on the key cell types involved in the development of adaptive immunity, namely dendritic cells, T cells, and B cells.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Megan L Falsetta
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Ashley R Rackow
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Thomas H Thatcher
- Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Patricia J Sime
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
6
|
Bastías JM, Balladares P, Acuña S, Quevedo R, Muñoz O. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLoS One 2017; 12:e0180993. [PMID: 28686742 PMCID: PMC5501645 DOI: 10.1371/journal.pone.0180993] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
Abstract
The effect of four cooking methods was evaluated for proximate composition, fatty acid, calcium, iron, and zinc content in salmon and Chilean jack mackerel. The moisture content of steamed salmon decreased (64.94%) compared to the control (68.05%); a significant decrease was observed in Chilean jack mackerel in all the treatments when compared to the control (75.37%). Protein content in both salmon and Chilean jack mackerel significantly increased under the different treatments while the most significant decrease in lipids was found in oven cooking and canning for salmon and microwaving for Chilean jack mackerel. Ash concentration in both salmon and Chilean jack mackerel did not reveal any significant differences. Iron and calcium content only had significant changes in steaming while zinc did not undergo any significant changes in the different treatments. Finally, no drastic changes were observed in the fatty acid profile in both salmon and Chilean jack mackerel.
Collapse
Affiliation(s)
- José M. Bastías
- Department of Food Engineering, University of Bío-Bío, Chillán, Chile
| | - Pamela Balladares
- Department of Food Engineering, University of Bío-Bío, Chillán, Chile
| | - Sergio Acuña
- Department of Food Engineering, University of Bío-Bío, Chillán, Chile
| | - Roberto Quevedo
- Department of Aquaculture and Agri-Food Resources, University of Los Lagos, Osorno, Chile
| | - Ociel Muñoz
- Institute of Food Science and Technology, University Austral of Chile, Valdivia, Chile
| |
Collapse
|