1
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2024:S0022-3166(24)01105-2. [PMID: 39424068 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Yang X, Wei L, Liang S, Wang Z, Li S. Comparative Transcriptomic Analysis on the Effect of Sesamol on the Two-Stages Fermentation of Aurantiochytrium sp. for Enhancing DHA Accumulation. Mar Drugs 2024; 22:371. [PMID: 39195487 DOI: 10.3390/md22080371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other measures. In this study, DHA production was improved by a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead of conventional peptone, and the optimization of fermentation conditions (optimal fermentation conditions: temperature 28.7 °C, salinity 10.7‱, nitrogen source concentration 1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture method for the commercial production of DHA by Aurantiochytrium sp.
Collapse
Affiliation(s)
- Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liyang Wei
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shitong Liang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Cao M, Yang F, McClements DJ, Guo Y, Liu R, Chang M, Wei W, Jin J, Wang X. Impact of dietary n-6/n-3 fatty acid ratio of atherosclerosis risk: A review. Prog Lipid Res 2024; 95:101289. [PMID: 38986846 DOI: 10.1016/j.plipres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.
Collapse
Affiliation(s)
- Minjie Cao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Fangwei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, China
| | | | - Yiwen Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Zhang MY, Xu XR, Zhao RP, Huang C, Song YD, Zhao ZT, Zhao YB, Ren XJ, Zhao XH. Mechanism of enhanced microalgal biomass and lipid accumulation through symbiosis between a highly succinic acid-producing strain of Escherichia coli SUC and Aurantiochytrium sp. SW1. BIORESOURCE TECHNOLOGY 2024; 394:130232. [PMID: 38141881 DOI: 10.1016/j.biortech.2023.130232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Microalgae, known for rapid growth and lipid richness, hold potential in biofuels and high-value biomolecules. The symbiotic link with bacteria is crucial in large-scale open cultures. This study explores algal-bacterial interactions using a symbiotic model, evaluating acid-resistant Lactic acid bacteria (LAB), stress-resilient Bacillus subtilis and Bacillus licheniformis, and various Escherichia coli strains in the Aurantiochytrium sp. SW1 system. It was observed that E. coli SUC significantly enhanced the growth and lipid production of Aurantiochytrium sp. SW1 by increasing enzyme activity (NAD-IDH, NAD-ME, G6PDH) while maintaining sustained succinic acid release. Optimal co-culture conditions included temperature 28 °C, a 1:10 algae-to-bacteria ratio, and pH 8. Under these conditions, Aurantiochytrium sp. SW1 biomass increased 3.17-fold to 27.83 g/L, and total lipid content increased 2.63-fold to 4.87 g/L. These findings have implications for more efficient microalgal lipid production and large-scale cultivation.
Collapse
Affiliation(s)
- Mei-Yu Zhang
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Xin-Ru Xu
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Ru-Ping Zhao
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Chao Huang
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Yuan-Da Song
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Zi-Tong Zhao
- Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Yu-Bin Zhao
- Luzhou Bio-Chem Technology Limited, Linyi, China
| | - Xiao-Jie Ren
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China; Shanli Health Food Technology Co., LTD, Shandong, China.
| |
Collapse
|
5
|
Liu S, Jin X, Wang R, Meng X, Du K, Li J, Gao X, Chang Y. A metabolomics discrimination-based strategy for screening the antithrombin active markers of perilla seeds: A natural oil crop. Food Chem 2024; 432:137183. [PMID: 37633135 DOI: 10.1016/j.foodchem.2023.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Natural crops oil with high nutritional value has gradually attracted attention. Perilla seeds are regarded as a source of functional edible oil in America, Asia and European countries due to its abundant nutrients. In this research, samples were extracted by different polarity solvents and evaluated their thrombin inhibition activities in vitro. Metabolomics combined with chemometrics revealed the antithrombin active markers of perilla seeds. The enzyme kinetics and molecular docking results were useful in clarifying their inhibition of thrombin. The orthogonal experimental design was applied to optimize the extraction process of six antithrombin active markers from perilla seeds. The results showed that rosmarinic acid, luteolin, luteolin-7-O-glucoside, α-linolenic acid, linoleic acid, and oleic acid were screened out as functional and active markers. Besides, perilla seeds as a natural oil crop had the potential of antithrombin. It can also be applied in the food field because of its nutraceutical functions. Metabolomics combined with chemometrics will facilitate the discovery of functional, active markers in perilla seeds, which is conducive to accurate quality control.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
7
|
Barreales D, Fernandes Â, Barros L, Capitão S, Castro Ribeiro A. Effects of regulated deficit irrigation and foliar kaolin application on quality parameters of almond [Prunus dulcis (Mill.) D.A. Webb]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7227-7240. [PMID: 37354200 DOI: 10.1002/jsfa.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Water stress during the growing season of the almond tree is the factor that most limits its yield. Different strategies have been studied in recent years to reduce its negative effects, such as deficit irrigation and the application of reflective spray compounds. A 3-year experiment (2019-2021) was set in a factorial design in which the effect of regulated deficit irrigation and foliar kaolin spray was evaluated on morphological characteristics (weight, length, width, and thickness of the nut and kernel, shell thickness, kernel yield, double kernels, and damaged kernels), color properties, nutritional value (carbohydrates, fat, proteins and ash) and chemical parameters (free sugars and fatty acids profiles). RESULTS In general, the significant differences between the treatments did not have a similar trend in the 3 years of the study. Regulated deficit irrigation and kaolin had no detrimental impact on almond morphological and color characteristics. The almond free sugars concentration was relatively stable under deficit irrigation and kaolin application. On the other hand, kaolin application positively affected the synthesis of linoleic acid. CONCLUSION Reducing the amount of irrigation water applied to almonds contributes to the sustainability of production without negatively affecting quality and even improving some quality parameters. In general, the foliar application of kaolin did not show significant differences in the evaluated morphological parameters. However, in terms of chemical composition, kaolin led to an increase in the concentration of linoleic acid and sucrose. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- David Barreales
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, León, Spain
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Susana Capitão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - António Castro Ribeiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
8
|
Chong SY, Wang X, van Bloois L, Huang C, Syeda NS, Zhang S, Ting HJ, Nair V, Lin Y, Lou CKL, Benetti AA, Yu X, Lim NJY, Tan MS, Lim HY, Lim SY, Thiam CH, Looi WD, Zharkova O, Chew NWS, Ng CH, Bonney GK, Muthiah M, Chen X, Pastorin G, Richards AM, Angeli V, Storm G, Wang JW. Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability. J Control Release 2023; 360:344-364. [PMID: 37406819 DOI: 10.1016/j.jconrel.2023.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE-/- and Ldlr-/- experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events.
Collapse
Affiliation(s)
- Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Louis van Bloois
- Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nilofer Sayed Syeda
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Vaarsha Nair
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Yuanzhe Lin
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Ayca Altay Benetti
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nicole Jia Ying Lim
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Michelle Siying Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Wen Donq Looi
- Bruker Daltonics, Bruker Singapore Pte. Ltd., 138671 Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, 119074 Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Glenn Kunnath Bonney
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital, 119074 Singapore, Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, 119074 Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, 119074 Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore, Singapore; Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, the Netherlands.
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Physiology, National University of Singapore, 117593 Singapore, Singapore.
| |
Collapse
|
9
|
Chen X, Ran J, Mazhar M, Zhu Y, Lin Y, Qin L, Miao S. The balanced unsaturated fatty acid supplement constituted by woody edible oils improved lipid metabolism and gut microbiota in high-fat diet mice. Front Nutr 2023; 10:1203932. [PMID: 37545586 PMCID: PMC10399753 DOI: 10.3389/fnut.2023.1203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Department of Laboratory Medicine, Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Muhammad Mazhar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
10
|
Rubak YT, Lalel HJD, Sanam MUE. Physicochemical, microbiological, and sensory characteristics of " Sui Wu'u" traditional pork products from Bajawa, West Flores, Indonesia. Vet World 2023; 16:1165-1175. [PMID: 37576773 PMCID: PMC10420695 DOI: 10.14202/vetworld.2023.1165-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Sui Wu'u is a traditional meat preservation product from Bajawa, a region in East Nusa Tenggara. It is made by mixing pork with salt and corn flour, which is then stored in a bamboo container (tuku) for months. After 6 months of storage, this study examined the physicochemical, microbiological, and sensory properties of Sui Wu'u. Materials and Methods Sui Wu'u products were prepared using the traditional recipe from the Bajawa community. Fresh pork (pork belly and backfat), corn flour, and salt were purchased from local/traditional markets at proportions of 65%, 30%, and 5%, respectively. The physicochemical, amino acid, fatty acid profile, microbiological, and sensory properties of Sui Wu'u were evaluated after being stored for 6 months in a bamboo container (tuku). Results The results indicated that these Sui Wu'u were mainly characterized by high-fat levels, followed by protein. The pH value, salt content, moisture content, and water activity were 4.72%, 1.72%, 6.11%, and 0.62%, respectively. Minerals (K, P, Se, and Zn) and vitamin B6, as well as amino acids, such as leucine, phenylalanine, lysine (essential amino acids), glycine, proline, glutamic acid, and alanine (non-essential amino acids), are present in Sui Wu'u. The fatty acid profile was dominated by monounsaturated fatty acids (MUFA) (21.69%), saturated fatty acids (SFA) (17.78%), and polyunsaturated fatty acids (PUFA) (5.36%). Monounsaturated fatty acids, oleic acid (C18:1n9) was the most abundant fatty acid in Sui Wu'u, followed by palmitic acid SFA (C16:0); MUFA stearic acid (C18:0); and PUFA linoleic (C18:2n-6). The microbiological characteristics of Sui Wu'u showed no detectable microorganisms (<10 CFU/g) for Salmonella, total E. coli and total Staphylococcus, and average values of 4.4 × 105 CFU/g for total microbes, which were still below the maximum limit of microbial contamination according to the regulations of the Food and Drug Supervisory Agency of the Republic of Indonesia. The sensory assessment indicated that panelists highly preferred (rated as very like) Sui Wu'u for all sensory attributes. Conclusion The physicochemical, microbiological, and sensory characteristics of Sui Wu'u after 6 months of storage indicated that it still provides essential nutrients for the body and is quite safe for consumption. The stability of Sui Wu'u's shelf life can be attributed to the appropriate combination of pork, salt, corn flour, bamboo packaging (tuku), and storage temperature. The high-fat content in Sui Wu'u can be reduced by increasing the proportion of lean meat. Ensuring strict sanitation during the manufacturing process, using high-quality pork, salt, corn flour, and proper packaging with bamboo can further improve the safety of Sui Wu'u for consumption.
Collapse
Affiliation(s)
- Yuliana Tandi Rubak
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Herianus J. D. Lalel
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Maxs Urias Ebenhaizar Sanam
- Department of Animal Diseases Sciences and Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| |
Collapse
|
11
|
Liu S, Jin X, Shang Y, Wang L, Du K, Chen S, Li J, He J, Fang S, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116022. [PMID: 36481246 DOI: 10.1016/j.jep.2022.116022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perilla frutescens (Linnaeus) Britton, Mem. Torrey Bot. Club 5: 277. 1894., is famous as a worldwide plant with multiple medical parts, including leaves, stems, fruits, etc. Perillae Fructus, the desiccative ripe fruit of P. frutescens, is locally called Zisuzi in Chinese Pharmacopoeia. It is a popularly used herb for relieving cough and asthma, dissipating phlegm and treating constipation in some Asian countries, such as China, Japan, India, South Korea, etc. Various chemical compounds were isolated and identified from Perillae Fructus. THE AIM OF THE REVIEW This review aims to summarize the botany, ethnopharmacological applications, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus to provide scientific evidence for development and utilization Perillae Fructus. MATERIALS AND METHODS Relevant information about Perillae Fructus was collected from ScienceDirect, PubMed, Web of science, CNKI, WanFang data, ancient classics and clinical reports. Some electronic databases were also retrieved. RESULTS Perillae Fructus was exerted to treat cough and asthma in traditional application. It also had the effect on moistening intestine to relieve constipation for tremendous lipid substances. Up to now, 193 compounds have been isolated and identified from Perillae Fructus, mainly including fatty acids, flavonoids, phenolic acids, phytosterols, triterpenoids and volatile oils. As for its pharmacological activities, prevalent traditional applications of Perillae Fructus have been supported by modern pharmacological experiments in vivo or in vitro, such as anti-inflammatory and anti-oxidant effects. Besides, Perillae Fructus also has hypolipidemic, anti-tumor, antibacterial effects, etc. This review will provide a scientific basis for further studies and rational applications of Perillae Fructus in the future. CONCLUSIONS According to its traditional applications, phytochemicals and pharmacological activities, Perillae Fructus was regarded as a valuable herb for application in medicine and food fields. Although some ingredients have been confirmed to have multiple pharmacological activities, their mechanisms of action are still unclear. Further studies on the material basis and mechanism of action are clearly warranted.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
12
|
Untargeted Metabolomics Based Prediction of Therapeutic Potential for Apigenin and Chrysin. Int J Mol Sci 2023; 24:ijms24044066. [PMID: 36835484 PMCID: PMC9967419 DOI: 10.3390/ijms24044066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The prominent flavonoids apigenin and chrysin have been demonstrated to have systemic benefits. Our previous work was first to establish the impact of apigenin and chrysin on cellular transcriptome. In the current study, we have revealed the ability of apigenin and chrysin to alter the cellular metabolome based on our untargeted metabolomics. Based on our metabolomics data, both these structurally related flavonoids demonstrate diverging and converging properties. Apigenin demonstrated the potential to possess anti-inflammatory and vasorelaxant properties through the upregulation of intermediate metabolites of alpha-linolenic acid and linoleic acid pathways. Chrysin, on the other hand, exhibited abilities to inhibit protein and pyrimidine synthesis along with downregulation of gluconeogenesis pathways based on the altered metabolites detected. Chrysin-mediated metabolite changes are mostly due to its ability to modulate L-alanine metabolism and the urea cycle. On the other hand, both the flavonoids also demonstrated converging properties. Apigenin and chrysin were able to downregulate metabolites involved in cholesterol biosynthesis and uric acid synthesis, namely 7-dehydrocholesterol and xanthosine, respectively. This work will provide understanding regarding the diverse therapeutic potential of these naturally occurring flavonoids and help us in curbing an array of metabolic complications.
Collapse
|
13
|
Xu J, Huang X, Guo Y, Ma X, Li P, Zhou S, Zhang C, Chen R, Van Halm-Lutterodt N, Yuan L. Discrepant modulating effects of dietary docosahexaenoic acid on cerebral lipids, fatty acid transporter expression and soluble beta-amyloid levels in ApoE -/- and C57BL/6J mice. Neuropathol Appl Neurobiol 2023; 49:e12855. [PMID: 36259948 DOI: 10.1111/nan.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
AIMS The study was designed to explore the role of apolipoprotein E (ApoE) deficiency concomitant with dietary docosahexaenoic acid (DHA) treatment on brain β-amyloid (Aβ) and lipid levels. METHOD A 5-month dietary DHA intervention was conducted in ApoE-deficient (ApoE-/- ) mice and wild-type C57BL/6J (C57 wt) mice. The Morris water maze test was performed to assess the behaviour of the animals. The cortical contents of soluble Aβ1-40 and Aβ1-42 were detected by enzyme-linked immunosorbent assay (ELISA). Cortical fatty acid levels were detected by gas chromatography. Gene and protein expression of molecules associated with cerebral Aβ and lipid metabolism were measured using real-time polymerase chain reaction (PCR), Western blot and histological methods. RESULTS DHA treatment increased the content of cortical DHA and n-3 polyunsaturated fatty acids (n-3 PUFAs) but decreased the ratio of n-6/n-3 PUFAs in ApoE-/- mice; whereas the content of cortical DHA and n-3 PUFAs in C57 wt mice remained unchanged after DHA treatment. Cerebral Fabp5 and Cd36 gene expression were significantly downregulated in DHA-fed C57 wt mice; cerebral Cd36 and Scarb1 gene expression were significantly upregulated, whereas Fabp5 gene expression was downregulated in DHA-fed ApoE-/- mice. In comparison with C57 wt mice, the content of cortical soluble Aβ1-42 , total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) increased, whereas the level of high-density lipoprotein cholesterol (HDL-C) decreased in ApoE-/- mice. Interestingly, these differences were significantly reversed by DHA dietary treatment. CONCLUSION DHA intervention has discrepant impacts on cerebral lipids, fatty acid transporter expression and soluble Aβ levels in ApoE-/- and C57 wt mice, suggesting the modifying role of ApoE status on the responses of cerebral lipids and Aβ metabolism to DHA treatment.
Collapse
Affiliation(s)
- Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.,Nutrition Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, UK
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | | | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Dietary fatty acids affect learning and memory ability via regulating inflammatory factors in obese mice. J Nutr Biochem 2022; 103:108959. [PMID: 35158028 DOI: 10.1016/j.jnutbio.2022.108959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE High-fat diets are linked to obesity, contributing to the alterations in inflammatory signaling pathways, which is associated with cognitive function. We aim to investigate the mechanisms by which various different types of dietary fatty acids affecting cognitive function in obese mice through the gut/brain axis-inflammatory signaling pathway. METHODS AND RESULTS Eight-week-old male C57BL/6 mice were fed with basal diet (control group), lard high-fat diet (containing long-chain saturated fatty acid (LCSFA group)), coconut oil high-fat diet (containing medium-chain saturated fatty acid (MCSFA group)), linseed oil high-fat diet (containing n-3 polyunsaturated fatty acid (n-3 PUFA group)), soybean oil high-fat diet (containing n-6 polyunsaturated fatty acid (n-6 PUFA group)), olive oil high-fat diet (containing monounsaturated fatty acid (MUFA group)) and 8% hydrogenated soybean oil high-fat diet (containing trans fatty acid (TFA group)) respectively for 16 weeks. Our results revealed that the mean escape latency was significantly prolonged in LCSFA group, and the latency to cross the platform location of n-6 PUFA and TFA groups were increased significantly. The differences of inflammatory markers and toll-like receptor-myeloid differentiation factor-88-nuclear factor kappa-B (TLR-MyD88-NF-κB) inflammatory signaling pathway expressions among all groups reached statistical significances. CONCLUSION Compared to basal diet, high-fat diets enriched in LCSFA, MCSFA, n-6 PUFA, MUFA, and TFA might exert detrimental effects on cognitive function in obese mice via regulating the inflammatory markers and inflammatory signaling pathway in brain and intestine. High-fat diet enriched in n-3 PUFA might exhibit different effect on modulating inflammatory responses in different tissues and might benefit to cognitive function.
Collapse
|
15
|
Reilly NA, Lutgens E, Kuiper J, Heijmans BT, Jukema JW. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol 2021; 18:824-837. [PMID: 34253911 DOI: 10.1038/s41569-021-00582-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
T cells are among the most common cell types present in atherosclerotic plaques and are increasingly being recognized as a central mediator in atherosclerosis development and progression. At the same time, triglycerides and fatty acids have re-emerged as crucial risk factors for atherosclerosis. Triglycerides and fatty acids are important components of the milieu to which the T cell is exposed from the circulation to the plaque, and increasing evidence shows that fatty acids influence T cell function. In this Review, we discuss the effects of fatty acids on four components of the T cell response - metabolism, activation, proliferation and polarization - and the influence of these changes on the pathogenesis of atherosclerosis. We also discuss how quiescent T cells can undergo a type of metabolic reprogramming induced by exposure to fatty acids in the circulation that influences the subsequent functions of T cells after activation, such as in atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathalie A Reilly
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands.
- Netherlands Heart Institute, Utrecht, Netherlands.
| |
Collapse
|
16
|
Miralles-Pérez B, Méndez L, Nogués MR, Sánchez-Martos V, Fortuño-Mar À, Ramos-Romero S, Hereu M, Medina I, Romeu M. Effects of a Fish Oil Rich in Docosahexaenoic Acid on Cardiometabolic Risk Factors and Oxidative Stress in Healthy Rats. Mar Drugs 2021; 19:md19100555. [PMID: 34677454 PMCID: PMC8539050 DOI: 10.3390/md19100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague-Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.
Collapse
Affiliation(s)
- Bernat Miralles-Pérez
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| | - Lucía Méndez
- Chemistry of Marine Products, Department of Food Technology, Institute of Marine Research (IIM-CSIC), C/Eduardo Cabello 6, E-36208 Vigo, Spain; (L.M.); (I.M.)
| | - Maria Rosa Nogués
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
- Correspondence: ; Tel.: +34-977-75-9355
| | - Vanessa Sánchez-Martos
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| | | | - Sara Ramos-Romero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (M.H.)
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Avd/Diagonal 643, E-08028 Barcelona, Spain
| | - Mercè Hereu
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (M.H.)
| | - Isabel Medina
- Chemistry of Marine Products, Department of Food Technology, Institute of Marine Research (IIM-CSIC), C/Eduardo Cabello 6, E-36208 Vigo, Spain; (L.M.); (I.M.)
| | - Marta Romeu
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| |
Collapse
|
17
|
Yue H, Liu W, Zhang W, Jia M, Huang F, Du F, Xu T. Dietary low ratio of n-6/n-3 polyunsaturated fatty acids improve type 2 diabetes mellitus via activating brown adipose tissue in male mice. J Food Sci 2021; 86:1058-1065. [PMID: 33590526 DOI: 10.1111/1750-3841.15645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
The ratio n-6/n-3 polyunsaturated fatty acids (PUFA) has been caused widespread discussion. However, the best ratio and mechanism of n-6/n-3 PUFA in type 2 diabetes mellitus (T2DM) are largely unknown. This study investigated the effects of different ratio of n-6/n-3 PUFA diets on brown adipose tissue (BAT) and T2DM in mice. Results showed that compared with high ratio of n-6/n-3 PUFA (50:1) diet, lower ratio of n-6/n-3 PUFA (1:1 and 5:1) diets significantly increased BAT mass by 67.55% and 60.49%, decreased the fasting blood glucose (24.87% and 20.64%), total cholesterol (32.9% and 23.84%), triglyceride (33.51% and 29.62%), low-density lipoprotein cholesterol (19.23% and 17.38%), and increased glucose tolerance by 21.99% and 15.52%. Further, qRT-PCR analyses indicated that lower ratio of n-6/n-3 PUFA diets activated BAT, increased the expression of Ucp1, β-3AR, PPAR-γ, cAMP, GLU1, HSL, LPL, and PGC-1α, further improved lipid and glucose metabolism in T2DM mice. In conclusion, this study substantiated that the lower ratio of n-6/n-3 PUFA (1:1 and 5:1) improve symptoms associated with T2DM via activating BAT. PRACTICAL APPLICATION: Dietary ratio of n-6/n-3 polyunsaturated fatty acids is essential for the improvement of chronic diseases. Our current study showed that 1:1 or 5:1 ratio of n-6/n-3 polyunsaturated fatty acids had better efficiency for type 2 diabetes mellitus via activating brown adipose tissue when compared with 1:50. This finding provided useful guidance for the daily diet of patients with diabetes.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Wenlong Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Min Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fenghong Huang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fangling Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
18
|
Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, Davidson MH, Kastelein JJP, Koenig W, McGuire DK, Mozaffarian D, Ridker PM, Ray KK, Katona BG, Himmelmann A, Loss LE, Rensfeldt M, Lundström T, Agrawal R, Menon V, Wolski K, Nissen SE. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020; 324:2268-2280. [PMID: 33190147 PMCID: PMC7667577 DOI: 10.1001/jama.2020.22258] [Citation(s) in RCA: 558] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE It remains uncertain whether the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) reduce cardiovascular risk. OBJECTIVE To determine the effects on cardiovascular outcomes of a carboxylic acid formulation of EPA and DHA (omega-3 CA) with documented favorable effects on lipid and inflammatory markers in patients with atherogenic dyslipidemia and high cardiovascular risk. DESIGN, SETTING, AND PARTICIPANTS A double-blind, randomized, multicenter trial (enrollment October 30, 2014, to June 14, 2017; study termination January 8, 2020; last patient visit May 14, 2020) comparing omega-3 CA with corn oil in statin-treated participants with high cardiovascular risk, hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol (HDL-C). A total of 13 078 patients were randomized at 675 academic and community hospitals in 22 countries in North America, Europe, South America, Asia, Australia, New Zealand, and South Africa. INTERVENTIONS Participants were randomized to receive 4 g/d of omega-3 CA (n = 6539) or corn oil, which was intended to serve as an inert comparator (n = 6539), in addition to usual background therapies, including statins. MAIN OUTCOMES AND MEASURES The primary efficacy measure was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina requiring hospitalization. RESULTS When 1384 patients had experienced a primary end point event (of a planned 1600 events), the trial was prematurely halted based on an interim analysis that indicated a low probability of clinical benefit of omega-3 CA vs the corn oil comparator. Among the 13 078 treated patients (mean [SD] age, 62.5 [9.0] years; 35% women; 70% with diabetes; median low-density lipoprotein [LDL] cholesterol level, 75.0 mg/dL; median triglycerides level, 240 mg/dL; median HDL-C level, 36 mg/dL; and median high-sensitivity C-reactive protein level, 2.1 mg/L), 12 633 (96.6%) completed the trial with ascertainment of primary end point status. The primary end point occurred in 785 patients (12.0%) treated with omega-3 CA vs 795 (12.2%) treated with corn oil (hazard ratio, 0.99 [95% CI, 0.90-1.09]; P = .84). A greater rate of gastrointestinal adverse events was observed in the omega-3 CA group (24.7%) compared with corn oil-treated patients (14.7%). CONCLUSIONS AND RELEVANCE Among statin-treated patients at high cardiovascular risk, the addition of omega-3 CA, compared with corn oil, to usual background therapies resulted in no significant difference in a composite outcome of major adverse cardiovascular events. These findings do not support use of this omega-3 fatty acid formulation to reduce major adverse cardiovascular events in high-risk patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02104817.
Collapse
Affiliation(s)
- Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - A. Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Michelle Garcia
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Dianna Bash
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany and Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Darren K. McGuire
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts
| | | | - Brian G. Katona
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gaithersburg, Maryland
| | - Anders Himmelmann
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gothenburg, Sweden
| | - Larrye E. Loss
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gaithersburg, Maryland
| | - Martin Rensfeldt
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gothenburg, Sweden
| | - Torbjörn Lundström
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gothenburg, Sweden
| | - Rahul Agrawal
- AstraZeneca BioPharmaceuticals R&D, Late-stage Development, Cardiovascular, Renal and Metabolic, Gothenburg, Sweden
| | - Venu Menon
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Kathy Wolski
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Steven E. Nissen
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
19
|
Argov-Argaman N, Glasser T, Muklada H, Hadaya O, Mesilati-Stahy R, Raz C, Landau SY. Lipidome changes, with a focus on phospholipids, due to feeding systems and processing in goat milk. Food Chem 2020; 340:127938. [PMID: 32871356 DOI: 10.1016/j.foodchem.2020.127938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022]
Abstract
We evaluated the effects of processing - pasteurization and yoghurt manufacturing - on some health-promoting lipidome components in milk from two feeding treatments - brushland grazing or hay-feeding in confinement - in dairy goats. The contents of fat and protein were higher, and of urea, lower, in grazing goats. Fatty acid composition - at the exception of saturated fatty acids - was affected by dietary management and milk processing. Phospholipid contents was lower in confined goats, with little effect for processing. The phospholipid-to-triglyceride ratio was decreased by pasteurization. Sensitivity to pasteurization of phospholipid composition differed between feeding treatments. The percentage of sphingomyelin increased following pasteurization, with no response for fermentation to yoghurt. These results can be exploited to modulate health-promoting fats in dairy products.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Science, The Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel.
| | | | - Hussein Muklada
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, Rishon Letzion 7505101, Israel.
| | - Oren Hadaya
- Department of Animal Science, The Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| | - Ronit Mesilati-Stahy
- Department of Animal Science, The Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| | - Chen Raz
- Department of Animal Science, The Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel.
| | - Serge Yan Landau
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, Rishon Letzion 7505101, Israel.
| |
Collapse
|
20
|
Fernandes L, Ramalhosa E, Pereira JA, Saraiva JA, Casal S. Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Res Int 2020; 132:109070. [PMID: 32331663 DOI: 10.1016/j.foodres.2020.109070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 11/18/2022]
Abstract
The present study aimed to evaluate the nutritional and bioactive potential of four edible flowers (borage, centaurea, camellia, and pansies). Significant differences were observed among the four. Water was the main constituent (>76%, fresh weight - fw). Linoleic and palmitic acids were the major fatty acids found in borage and red and yellow pansies, while in camellia it was the arachidic acid. In white pansies, behenic and arachidic acids were predominant. Concerning vitamin E, α-tocopherol was the major vitamer. Carotenoids values varied between 5.8 and 181.4 mg β-carotene/100 g dry weight (dw) in centaurea and borage, respectively, being particularly rich in lutein. Malic acid was the major organic acid, except in centaurea, where succinic acid was predominant. Fructose, glucose and sucrose were detected in all flowers. These results can contribute to the knowledge of these edible flowers and consequently increase their popularity among consumers and in the food industry.
Collapse
Affiliation(s)
- Luana Fernandes
- Centro de Investigação de Montanha (CIMO)/Instituto Politécnico de Bragança, Campus de Stª Apolónia, 5300-253 Bragança, Portugal; LAQV-REQUIMTE - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; LAQV@REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO)/Instituto Politécnico de Bragança, Campus de Stª Apolónia, 5300-253 Bragança, Portugal.
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO)/Instituto Politécnico de Bragança, Campus de Stª Apolónia, 5300-253 Bragança, Portugal
| | - Jorge Alexandre Saraiva
- LAQV-REQUIMTE - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Casal
- LAQV@REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
Poruba M, Anzenbacher P, Racova Z, Oliyarnyk O, Hüttl M, Malinska H, Markova I, Gurska S, Kazdova L, Vecera R. The effect of combined diet containing n-3 polyunsaturated fatty acids and silymarin on metabolic syndrome in rats. Physiol Res 2020; 68:S39-S50. [PMID: 31755289 DOI: 10.33549/physiolres.934322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The risk of development of metabolic syndrome can be increased by hypertriglyceridemia. A search for effective therapy is a subject of considerable attention. Therefore, our hypothesis is that the fish oil (containing polyunsaturated fatty acids; n-3 PUFA) in a combination with silymarin can more effectively protect against hypertriglyceridemia-induced metabolic disturbances. The study was conducted using a unique non-obese strain of rats with hereditary hypertriglyceridemia an accepted model of metabolic syndrome. Adult male rats were treated with n-3 PUFA (300 mg/kg/day) without or with 1 % micronized silymarin in a diet for 4 weeks. The treatment with the diet containing n-3 PUFA and silymarin significantly reduced concentrations of serum triglycerides (-45 %), total cholesterol (-18 %), non-esterified fatty acids (-33 %), and ectopic lipid accumulation in skeletal muscle (-35 %) compared to controls. In addition, an increase in Abcg5 and Abcg8 mRNA expression (as genes affecting lipid homeostasis) as well as in protein content of ABCG5 (+78 %) and ABCG8 (+232 %) transporters have been determined in the liver of treated rats. Our findings suggest that this combined diet could be used in the prevention of hypertriglyceridemia-induced metabolic disorders.
Collapse
Affiliation(s)
- M Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, atherothrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorption/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages. In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the role of CD36 and dietary fatty acids in cholesterol metabolism might be considered in medical nutrition therapy in the near future. Therefore, the novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis are discussed in this review.
Collapse
|
23
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, Yu X, Liu Z. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11:3621-3631. [PMID: 32292967 DOI: 10.1039/c9fo02606a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Disruptions to circadian rhythm have been associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). DHA has been found to affect both circadian rhythm and lipid metabolism. In this study, the relationship between DHA substitution and improvements in lipid metabolism and circadian clock regulation was studied. Male C57BL/6 mice were fed a control, a high fat or a DHA substituted diet for 12 weeks. Biochemical analysis and H&E staining showed that the high-fat diet (HFD) could induce NAFLD, and DHA substitution (AOH) could attenuate NAFLD. The qPCR results showed that the expressions of core clock genes Clock and Bmal1 were significantly higher at zeitgeber (ZT) 0 (7:00 am) than those at ZT12 (7:00 pm) in the control group, while this difference in day and night disappeared in the HFD group, but was observed in the AOH group. Western blotting results indicated that the expressions of rhythm output molecules (RORα and REV-ERBα) and their downstream protein INSIG2 all showed the corresponding circadian changes. SREBP-regulated proteins were significantly increased in the HFD group at both ZT0 and ZT12, but decreased in the AOH group accompanied by the corresponding changes in the protein expressions of HMGCR, LXR, CYP7A1 and CYP27A1. Altogether, HFD can decrease or disrupt circadian rhythm fluctuation by up-regulating the expression of core circadian rhythm genes Clock and Bmal1 at ZT12, and induce metabolic abnormalities through the INSIG2-SREBP pathway regulated by RORα and REV-ERBα. DHA substitution seems to restore circadian rhythm similar to the normal circadian rhythm of "night-high, day-low" through the metabolic pathway regulated by rhythmic nuclear receptors, improving the lipid metabolism rhythm and reducing liver fat.
Collapse
Affiliation(s)
- Rulong Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu R, Chen L, Wang Y, Zhang G, Cheng Y, Feng Z, Bai X, Liu J. High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J Nutr Biochem 2020; 79:108330. [PMID: 32179408 DOI: 10.1016/j.jnutbio.2019.108330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China.
| |
Collapse
|
25
|
Vara-Messler M, Mukdsi JH, Osieki NI, Benizio E, Repossi GM, Ajayi EIO, García NH. Eicosapentaenoic acid prevents salt sensitivity in diabetic rats and decreases oxidative stress. Nutrition 2019; 72:110644. [PMID: 32044546 DOI: 10.1016/j.nut.2019.110644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Salt sensitivity (SS) is associated with increased cardiovascular risk in patients with Type 2 diabetes mellitus (T2-DM) due to an increase in renal oxidation. ω-3 polyunsaturated fatty acids have shown antioxidant effects, but a typical Western diet contains limited content. In particular, ω-3 polyunsaturated fatty acids are able to activate nuclear factor erythroid 2-related factor 2 (Nrf-2) to prevent diabetes mellitus-related complications by mitigating oxidative stress. Therefore, we hypothesized that eicosapentaenoic acid (EPA; ω-3) modulates SS in rats with T2-DM by decreasing renal oxidative stress via Nrf-2 activation and enhancing the antiinflammatory response via interleukin (IL) 6 modulation. METHODS Three-month-old male rats (n = 40) were fed with a Normal Na-diet (NNaD) and randomly selected into four groups: Healthy Wistar nondiabetic rats (Wi), diabetic controls (eSS), arachidonic acid-treated eSS (AA; ω-6), and EPA-treated eSS (ω-3). After 1 year, rats were placed in metabolic cages for 7 d and fed a NNaD, followed by a 7-d period with a High Na-diet (HNaD). Systolic blood pressure, body weight, serum IL-6 and reactive oxygen species (ROS) levels were determined at the end of each 7-d period. Glycated hemoglobin (HbA1c), triacylglycerol, creatinine, and cholesterol levels were determined. ROS levels and Nrf-2 expression in kidney lysates were also assayed. Histologic changes were evaluated. A t test or analysis of variance was used for the statistical analysis. RESULTS After a HNaD, systolic blood pressure increased in both the control eSS and AA groups, but not in the EPA and Wi groups. However, HbA1c levels remained unchanged by the treatments, which suggests that the observed beneficial effect was independent of HbA1c levels. The IL-6 levels were higher in the eSS and AA groups, but remained unaltered in EPA and Wi rats after a HNaD diet. Interestingly, EPA protected against serum ROS in rats fed the HNaD, whereas AA did not. In kidney lysates, ROS decreased significantly in the EPA group compared with the eSS group, and Nrf-2 expression was consistently higher compared with the AA and eSS groups. Diabetic rats presented focal segmental sclerosis, adherence to Bowman capsule, and mild-to-moderate interstitial fibrosis. EPA and AA treatment prevented kidney damage. CONCLUSIONS An adequate ω3-to-ω6 ratio prevents SS in diabetic rats by a mechanism that is independent of glucose metabolism but associated with the prevention of renal oxidative stress generation. These data suggest that EPA antioxidant properties may prevent the development of hypertension or kidney damage.
Collapse
Affiliation(s)
| | - Jorge H Mukdsi
- Instituto de Investigaciones en Ciencias de la Salud de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia I Osieki
- Instituto de Investigaciones en Ciencias de la Salud de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Biología Celular, Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evangelina Benizio
- Instituto de Investigaciones en Ciencias de la Salud de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Biología Celular, Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón M Repossi
- Instituto de Investigaciones en Ciencias de la Salud de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Biología Celular, Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ebenezer I O Ajayi
- DC&ONID, Biochemistry Department, Osun State University, Osogbo, Nigeria; IMMF-INIMEC-Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Néstor H García
- Instituto de Investigaciones en Ciencias de la Salud de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
26
|
Zhou Q, Ren D, Xiao Y, Yi L, Zhou Z. Plasma fatty acid metabolic profiling coupled with clinical research reveals the risk factors for atherosclerosis development in type 2 diabetes mellitus. RSC Adv 2019; 9:36162-36170. [PMID: 35540605 PMCID: PMC9074937 DOI: 10.1039/c9ra07634d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022] Open
Abstract
Many publications have reported that the incidence of atherosclerotic cardiovascular diseases is higher in patients with type 2 diabetes mellitus (T2DM) than in the non-diabetic population; however, until now, the reason has been unclear. In this study, 25 males (25/64, 39.06%) and 19 females (19/54, 35.19%) had complications with atherosclerosis after two years. To reveal the risk factors for developing atherosclerosis in patients with T2DM, plasma fatty acid metabolic profiling based on gas chromatography-mass spectrometry was combined with the analysis of clinical biochemical indices. The results of partial least squares-discriminant and canonical correlation analyses suggested that C20:0, C22:6n-3, glycosylated hemoglobin, waist circumference, and waist-to-hip ratio are likely to be closely related to T2DM complicated with atherosclerosis. Metabolomic information is a beneficial supplement to existing clinical indices and is useful in predicting the development of a patient's disease and optimizing the treatment.
Collapse
Affiliation(s)
- Qianyu Zhou
- Faculty of Agriculture and Food, Kunming University of Science and Technology Kunming Yunnan 650500 China +86 871 65920302
| | - Dabing Ren
- Faculty of Agriculture and Food, Kunming University of Science and Technology Kunming Yunnan 650500 China +86 871 65920302
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology Kunming Yunnan 650500 China
| | - Yang Xiao
- Diabetes Center, Institute of Metabolism and Endocrinology, Department of Endocrinology, The Second Xiangya Hospital, Central South University Changsha Hunan 410011 China
| | - Lunzhao Yi
- Faculty of Agriculture and Food, Kunming University of Science and Technology Kunming Yunnan 650500 China +86 871 65920302
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology Kunming Yunnan 650500 China
| | - Zhiguang Zhou
- Diabetes Center, Institute of Metabolism and Endocrinology, Department of Endocrinology, The Second Xiangya Hospital, Central South University Changsha Hunan 410011 China
| |
Collapse
|
27
|
Auqui SM, Egea M, Peñaranda I, Garrido MD, Linares MB. Rustic Chato Murciano pig breed: Effect of the weight on carcass and meat quality. Meat Sci 2019; 156:105-110. [PMID: 31150937 DOI: 10.1016/j.meatsci.2019.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
Carcass and meat quality parameters of two different weights of pigs from the rustic breed Chato Murciano (Murcia Region, south-eastern Spain) were studied: light weight (LW, 147.98 ± 3.78 kg live weight) and heavy weight (HW, 176.07 ± 4.78 kg live weight). No weight-dependent effects were observed on carcass quality (carcass yield, length, back fat thickness) or on moisture, pH, and the L* and a* coordinates. The HW group had a higher fat content and cholesterol values than the LW group. None of the fatty acids analysed in the respective meats showed differences between groups (P > .05), except C16:0, C18:2 and C18:3. The HW group had higher values for unsaturated and polyunsaturated fatty acids and the n6/n3 index than LW, and lower values for saturated fat and the Saturated/Polyunsaturated fat ratio and a lower Atherogenesis Index. In conclusion, meat and fat quality are influenced by the final live weight of Chato Murciano pigs.
Collapse
Affiliation(s)
- S M Auqui
- Department of Food Science and Technology, Veterinary Faculty, University of Murcia, Espinardo 30071, Murcia, Spain
| | - M Egea
- Department of Food Science and Technology, Veterinary Faculty, University of Murcia, Espinardo 30071, Murcia, Spain
| | - I Peñaranda
- Department of Food Science and Technology, Veterinary Faculty, University of Murcia, Espinardo 30071, Murcia, Spain
| | - M D Garrido
- Department of Food Science and Technology, Veterinary Faculty, University of Murcia, Espinardo 30071, Murcia, Spain
| | - M B Linares
- Department of Food Science and Technology, Veterinary Faculty, University of Murcia, Espinardo 30071, Murcia, Spain.
| |
Collapse
|
28
|
Hu H, Li JY, Pan XR, Zhang F, Ma LL, Wang HJ, Zeng RJ. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:140-149. [PMID: 30504016 DOI: 10.1016/j.scitotenv.2018.11.346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of nitrogen (N) and phosphorous (P) stress on the production of DHA or EPA and total fatty acids (TFAs) in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Five N or P starvation/limitation conditions (N sufficient and P limited, N sufficient and P starved, N starved and P sufficient, N starved and P limited, and N and P starved) and one N and P sufficient condition (control) were studied. The results demonstrated that the proportion of DHA or EPA among TFAs and production in the microalgae suspensions decreased (57%, 73% for N stress and 18%, 51% for P stress, respectively) under N or P stress in both microalgae compared with the N and P sufficient group. Differently, DHA dry weight content of T. lutea decreased significantly, and EPA dry weight content of M. subterraneus decreased slightly under N starved conditions. Clear differences in TFA content/production and the relationship between TFA and DHA or EPA production/content and CO2 fixation were observed between the two microalgae. These results give a new sight on the difference between marine microalgae and freshwater microalgae. Meanwhile, it gave a potential application to produce DHA or EPA and TFA combining with CO2 fixation by these microalgae.
Collapse
Affiliation(s)
- Hao Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; Anhui Water Conservancy College, Hefei 231603, PR China
| | - Jia-Yun Li
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, PR China
| | - Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lin-Lin Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Hua-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; School of Environmental and Chemical Engineering, Anhui Vocational and Technical College, Hefei 230011, PR China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; Centre of Wastewater Resource Recovery, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
29
|
Anti-atherosclerotic action of GW9508 - Free fatty acid receptors activator - In apoE-knockout mice. Pharmacol Rep 2019; 71:551-555. [PMID: 31129318 DOI: 10.1016/j.pharep.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the past two decades, enhanced understanding of the biology of G-protein-coupled receptors (GPRs) has led to the identification of several such receptors as novel targets for free fatty acids (FFAs). Two GPRs, FFAR1 and FFAR4, have received special attention in the context of chronic inflammatory diseases, thanks to their anti-inflammatory activities. METHODS The present study investigates the influence of prolonged treatment with GW9508 - agonist of FFAR1 and FFAR4 - on the development of atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS GW9508 administration has led to the reduction of atheroscletoric plaque size in an apoE-knockout mice model. Moreover, a FFAR1/FFAR4 agonist reduced the content of macrophages by almost 20%, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state macrophages. CONCLUSIONS Prolonged administration of GW9508 resulted in significant amelioration of atherogenesis, providing evidence that the strategy based on macrophage phenotype switching toward an M2-like activation state via stimulation of FFAR1/FFAR4 receptors holds promise for a new approach to the prevention or treatment of atherosclerosis.
Collapse
|
30
|
Jansson P, Kay B. Aldehydes identified in commercially available ω-3 supplements via 1 H NMR spectroscopy. Nutrition 2018; 60:74-79. [PMID: 30529885 DOI: 10.1016/j.nut.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cardiovascular disease (CVD) is the leading cause of mortality globally. Studies have suggested that supplementary ω-3 oils may provide cardiovascular protection, although the literature is equivocal. Recently, it has been established that many commercially available ω-3 supplements are unacceptably oxidized, leading to myriad potential health risks. One oxidation product of concern is aldehydes, which have been shown to have mutagenic, cytotoxic, and inflammatory properties that may contribute to many different disease processes, including CVD. The aim of this study was to assess the prevalence of aldehyde contamination in commercially available ω-3 supplements. METHODS We tested 12 different ω-3 oils (6 fish, 4 krill, 2 algae), using 1 H-nuclear magnetic resonance scanning. This work is of a pilot nature, as such we randomly selected and purchased 12 different oils over the counter from various local retailers according to the sales representatives' recommendations. RESULTS The four krill products contained aldehydes at concentrations between 5.652 (±0.496) and 6.779 (±1.817) mMol/L. Both algae samples contained aldehydes: 1.235 (±0.111) and 1.565 (±0.618) mMol/L. Two of the six fish oils contained aldehydes 1.568 (±0.291) and 4.319 (±2.361) mMol/L. There is currently no standard for aldehyde content nor for labeling of ω-3 supplements. Two-thirds (8 of 12) of the ω-3 supplements tested in this study contained aldehydes. Aldehydes have the potential to precipitate serious health problems even at very low absolute intake volumes. These findings may provide reason for sober reflection.
Collapse
Affiliation(s)
- Pim Jansson
- Independent nutritionist and biomedical scientist, Mapua, New Zealand
| | - Bartholomew Kay
- Independent physiologist and nutritionist, Mapua, New Zealand.
| |
Collapse
|
31
|
Liu L, Hu Q, Wu H, Wang X, Gao C, Chen G, Yao P, Gong Z. Dietary DHA/EPA Ratio Changes Fatty Acid Composition and Attenuates Diet-Induced Accumulation of Lipid in the Liver of ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6256802. [PMID: 30538803 PMCID: PMC6261399 DOI: 10.1155/2018/6256802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE-/- mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.
Collapse
Affiliation(s)
- Liang Liu
- 1Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- 2College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- 3Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Qinling Hu
- 1Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- 2College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huihui Wu
- 1Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- 2College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiujing Wang
- 1Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- 2College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Gao
- 4National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Guoxun Chen
- 5Department of Nutrition, University of Tennessee at Knoxville, Knoxville 37996, USA
| | - Ping Yao
- 6Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyong Gong
- 1Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- 2College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- 3Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| |
Collapse
|
32
|
Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci Rep 2017; 7:4560. [PMID: 28676689 PMCID: PMC5496870 DOI: 10.1038/s41598-017-04474-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 01/05/2023] Open
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 fatty acid with immunomodulatory and anti-inflammatory effects. Beyond its direct effects, the metabolic products of EPA also regulate various immune responses. Animal experiments demonstrated that EPA reduces adipose inflammation in high fat diet-induced obese mouse. However, the effects of EPA on infiltrated immune cell populations in adipose tissue and underlying mechanisms remain to be elucidated. We performed flow cytometry of stromal vascular fraction of epididymal adipose tissues from C57BL/6J and ob/ob mice fed normal chow mixed with or without 5% EPA. The numbers of hematopoietic cells, including Tregs, were higher in both C57BL/6J and ob/ob mice fed EPA diet compared with control diet. EPA enhanced the induction of Tregs in co-cultures of adipose tissue macrophages (ATMs) and naïve T cells. Among EPA metabolites, 5-HEPE was the most potent inducer of Tregs. GPR119 and GPR120 are receptors for 5-HEPE and EPA, respectively, and antagonist of GPR119 blocked Treg induction by EPA in the presence of ATMs. Alox5 gene encodes 5-lipoxygenase enzyme catalyzing EPA into 5-HEPE, and inhibitor of 5-lipoxygenase down-regulated EPA-mediated induction of adipose tissue Tregs in ob/ob mice. The study findings demonstrated that both EPA and 5-HEPE enhance ATM-mediated Treg induction.
Collapse
|
33
|
Shang T, Liu L, Zhou J, Zhang M, Hu Q, Fang M, Wu Y, Yao P, Gong Z. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis 2017; 16:65. [PMID: 28356106 PMCID: PMC5372293 DOI: 10.1186/s12944-017-0461-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background A sedentary lifestyle and poor diet are risk factors for the progression of non-alcoholic fatty liver disease. However, the pathogenesis of hepatic lipid accumulation is not completely understood. Therefore, the present study explored the effects of dietary supplementation of various ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on a high-fat diet-induced lipid metabolism disorder and the concurrent liver damage. Methods Using high-fat diet-fed C57BL/6 J mice as the animal model, diets of various ratios of DHA/EPA (2:1, 1:1, and 1:2) with an n-6/n-3 ratio of 4:1 were prepared using fish and algae oils enriched in DHA and/or EPA and sunflower seed oils to a small extent instead of the high-fat diet. Results Significantly decreased hepatic lipid deposition, body weight, serum lipid profile, inflammatory reactions, lipid peroxidation, and expression of adipogenesis-related proteins and inflammatory factors were observed for mice that were on a diet supplemented with DHA/EPA compared to those in the high-fat control group. The DHA/EPA 1:2 group showed lower serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol levels, lower SREBP-1C, FAS, and ACC-1 relative mRNA expression, and higher Fra1 mRNA expression, with higher relative mRNA expression of enzymes such as AMPK, PPARα, and HSL observed in the DHA/EPA 1:1 group. Lower liver TC and TG levels and higher superoxide dismutase levels were found in the DHA/EPA 2:1 group. Nonetheless, no other notable effects were observed on the biomarkers mentioned above in the groups treated with DHA/EPA compared with the DHA group. Conclusions The results showed that supplementation with a lower DHA/EPA ratio seems to be more effective at alleviating high-fat diet-induced liver damage in mice, and a DHA/EPA ratio of 1:2 mitigated inflammatory risk factors. These effects of n-3 polyunsaturated fatty acids (PUFA) on lipid metabolism may be linked to the upregulation of Fra1 and attenuated activity of c-Jun and c-Fos, thus ultimately reducing the severity of the lipid metabolism disorder and liver damage to some extent.
Collapse
Affiliation(s)
- Tingting Shang
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Liang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Jia Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Mingzhen Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Qinling Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Min Fang
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China
| | - Yongning Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China.,China National Center For Food Safety Risk Assessment, Beijing, 100022, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 XueFuNan Road, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
34
|
Dasilva G, Pazos M, García-Egido E, Gallardo JM, Ramos-Romero S, Torres JL, Romeu M, Nogués MR, Medina I. A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets. J Nutr Biochem 2017; 43:53-67. [PMID: 28260647 DOI: 10.1016/j.jnutbio.2017.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
Abstract
The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.
| | - Manuel Pazos
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Eduardo García-Egido
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - José M Gallardo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - María-Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| |
Collapse
|