1
|
Yu H, Yu B, Qin X, Shan W. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. J Affect Disord 2023; 339:180-193. [PMID: 37437725 DOI: 10.1016/j.jad.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND High-fat diet (HFD) consumption is an important reason for promoting depression, but the mechanism is unclear. The present study aims to explore the relationship between metabolic disturbance and HFD-induced depression-like behaviors. METHODS Depression models were established by HFD consumption and chronic unpredictable mild stress (CUMS) in mice. Enzyme-linked immunosorbent assay, western blotting, real-time polymerase chain reaction, gas chromatography and metabolomic analysis were undertaken to investigate the 5-hydroxytryptamine (5-HT) system, neuroinflammation and to identify altered lipid metabolic pathways. RESULTS Depression-like behaviors, impaired 5-HT neurotransmission and disordered lipid metabolism were observed upon HFD consumption. Despite a similar reduction of high-density lipoprotein cholesterol in CUMS and HFD group, high levels of body low-density lipoprotein cholesterol in the HFD group could help distinguish HFD from CUMS. Levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammation-related metabolites were increased in HFD mice, so a link between depression and inflammation was postulated. Different metabolites were enriched in the two groups. The linoleic acid (LA) metabolic pathway and expression of fatty acid desaturase (FADS)1 and FADS2 (key enzymes in LA metabolic pathway) were enhanced significantly in HFD mice compared with the control group. LIMITATIONS Causality analyses for HFD and inflammation-related features were not undertaken. CONCLUSIONS HFD-induced depression-like behaviors was characterized by more severely disordered metabolism of lipids (especially in the LA metabolic pathway) and increased levels of inflammatory mediators, which might be the reasons for the disturbance of serotonergic system in hippocampus.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Bixian Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Xiuyuan Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| |
Collapse
|
2
|
Zhao J, Ye L, Liu Z, Wu J, Deng D, An L, Bai S, Yang L, Liu B, Shi Y, Liu Z, Zhang R. The Effects of Early-Life Stress on Liver Transcriptomics and the Protective Role of EPA in a Mouse Model of Early-Life-Stress-Induced Adolescent Depression. Int J Mol Sci 2023; 24:13131. [PMID: 37685937 PMCID: PMC10487865 DOI: 10.3390/ijms241713131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Early-life stress (ELS) was found to increase the risk of adolescent depression, and clinical evidence indicated that eicosapentaenoic acid (EPA) was decreased in patients with adolescent depression, but the underlying mechanisms are unclear. Here, we utilized an ELS model of maternal separation with early weaning to explore the protective role of EPA in adolescent depression. We found that that ELS induced depression-like behavior rather than anxiety-like behavior in adolescent mice. RNA-sequencing results showed that ELS changed the transcription pattern in the liver, including 863 upregulated genes and 971 downregulated genes, especially those related to the biosynthesis of unsaturated fatty acids metabolism in the liver. Moreover, ELS decreased the expression of the rate-limiting enzymes, fatty acid desaturases 1/2 (FADS1/2), involved in the biosynthesis of EPA in the liver. Additionally, ELS reduced the levels of EPA in the liver, serum, and hippocampus, and EPA administration improved depression-like behavior-induced by ELS. Our results provide transcriptomic evidence that ELS increases the risk of adolescent depression by reducing the synthesis of unsaturated fatty acids in the liver, especially EPA, and suggest that supplementation with EPA should be investigated as a potential treatment for adolescent depression.
Collapse
Affiliation(s)
- Jinlan Zhao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lihong Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Zuyi Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Jiayi Wu
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.W.); (Y.S.)
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lin An
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Shasha Bai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Binjie Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.W.); (Y.S.)
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.Z.); (L.Y.); (Z.L.); (D.D.); (L.A.); (S.B.); (L.Y.); (B.L.)
| |
Collapse
|
3
|
Iodide intake during pregnancy and lactation stimulates KLF9, BDNF expression in offspring brain with elevated DHA, EPA metabolites. Heliyon 2023; 9:e13161. [PMID: 36816261 PMCID: PMC9932675 DOI: 10.1016/j.heliyon.2023.e13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
To investigate the effect of different iodide intake during pregnancy and lactation on thyroid function, docosahexaenoic acid (DHA), Eicosapentaenoic acid (EPA) metabolites, the expression of Krüppel-like factor KLF9 (KLF9), brain-derived neurotrophic factor (BDNF) in brain in offspring rats. In both male and female offspring rats, serum FT3, FT4 levels and the expression of KLF9, thyroid hormone receptors (TR)α, TRβ and BDNF in the hippocampal region and cerebellum were significantly increased in 5 times higher-than-normal pregnant iodide intake (5 HI) and 10 times higher-than-normal pregnant iodide intake (10 HI) group. The median levels of DHA metabolite (17-HDoHE) and EPA metabolites (15-HEPE, 17,18-EEQ, 9-HEPE and 14,15-DiHETE) were significantly increased in 5 HI and 10 HI group of offspring rats. Serum DHA, EPA metabolites and KLF9 as well as BDNF expression in brain might be potential iodine status biomarkers to reflect brain development in offspring.
Collapse
|
4
|
Lee Y, Oh H, Jo M, Cho H, Park Y. Synergistic effect of n-3 PUFA and probiotic supplementation on bone loss induced by chronic mild stress through the brain–gut–bone axis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Effect of increased levels of dietary α-linolenic acid on the n-3 PUFA bioavailability and oxidative stress in rat. Br J Nutr 2022; 127:1320-1333. [PMID: 34462019 DOI: 10.1017/s0007114521002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the impact of increased alpha-linolenic acid (ALA) dietary levels on its plasma bioavailability and its bioconversion in n-3 long chain poly unsaturated fatty acids during a 60-d kinetics and the oxidative stress potentially associated. Rats were submitted to a normolipidic diet providing 0, 3, 10 and 24% ALA of dietary lipids for 0, 15, 30 and 60 days. The lipid peroxidation and oxidative stress (nitric oxide (NO) contents and catalase (CAT), superoxide dismutase (SOD), gluthation peroxidase (GPx) activities) were studied in the liver and plasma. When the diet was deprived in n-3 PUFAs, ALA, (eicosanoic acid) EPA and docosahexaenoic acid (DHA) levels decreased in all lipid fractions of plasma and in red blood cell (RBC) lipids. The addition of ALA in the diet linearly improves its bioavailability and its bioconversion in EPA (R²=0.98). By providing 10 to 24% ALA in dietary lipids (LA/ALA, 1·6 and 5·5 respectively), ALA and EPA were more broadly packaged in all lipid fractions (triglyceride (TAG), cholesterol ester (CE) and free fatty acids (FFA)) of plasma from 15 to 30 days timeframe. Only 3% ALA was sufficient to promote the maximal bioconversion of ALA in DHA in phospholipid (PL) and TAG fractions. Additionally, the improvement of ALA bioconversion in EPA and DHA did not impact the oxidative stress markers and limiting lipid peroxidation. To conclude, this study demonstrated that in rat, 10% ALA in the lipid diet for 15-30 days promotes its bioavailability and its bioconversion and allowed the greatest levels in plasma and RBCs.
Collapse
|
6
|
Decandia D, Landolfo E, Sacchetti S, Gelfo F, Petrosini L, Cutuli D. n-3 PUFA Improve Emotion and Cognition during Menopause: A Systematic Review. Nutrients 2022; 14:1982. [PMID: 35565948 PMCID: PMC9100978 DOI: 10.3390/nu14091982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Women show an increased risk of cognitive impairment and emotional disorders, such as anxiety and depression, when approaching menopause. Data on risk and protection factors have yielded robust evidence on the effects of lifestyle factors, such as diet, in preserving emotional and cognitive functioning. This review focused on the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on anxiety, depression, and cognition during the menopausal transition. This systematic review considered all articles published until 31 December 2021, and the search was performed on two databases, PubMed and Scopus. The fields of interest were "menopause", "n-3 PUFA" and "emotional and cognitive aspects". Out of the 361 articles found on PubMed and 283 on Scopus, 17 met inclusion criteria. They encompassed 11 human and 6 animal studies. Most studies reported relieved depressive symptoms in relation to n-3 PUFA intake. While controversial results were found on anxiety and cognition in humans, n-3 PUFA consistently reduced anxiety symptoms and improved cognition in animal studies. Taken together, n-3 PUFA intake shows beneficial effects on emotional and cognitive behaviours during menopause transition. However, further investigations could increase knowledge about the effectiveness of n-3 PUFA on psychological well-being in this delicate period of feminine life.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
| | - Stefano Sacchetti
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
7
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
8
|
Da Rocha RVO, Martins MIM, Antunes FTT, Martins MG, Klein AB, Corrêa DS, de Souza AH. Behavioral, Oxidative, and Biochemical Effects of Omega-3 on an Ovariectomized Rat Model of Menopause. J Menopausal Med 2022; 27:132-140. [PMID: 34989186 PMCID: PMC8738853 DOI: 10.6118/jmm.21016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Menopause induces changes in neuronal transmission, leading to anxiety and depression. Changes in the brain's glutamate levels cause psychological behavior in postmenopausal women. Omega-3 has been studied to improve some of these behaviors. METHODS Twenty-four female Wistar rats were divided into four groups: sham-operated treated with water (SO-W), sham-operated treated with omega-3 (SO-O), ovariectomized (OVX) treated with water (OVX-W), and bilateral OVX treated with omega-3 (OVX-O). These treatments were performed for 20 days via gavage, before and after surgery, totaling 40 days. RESULTS In the forced swimming, elevated plus-maze, and open field tests to assess behaviors, such as depression and anxiety, omega-3 improved these behaviors in both treated groups. The levels of thiobarbituric acid reactive substances (TBARS) in the brain were not different between the groups; however, there was a significant decrease in the catalase activity in the SO-O group compared with the SO-W group (P < 0.05). The glutamate level in the cerebrospinal fluid (CSF) was elevated in the SO-O group (P < 0.001) but not in the OVX-W or OVX-O groups. CONCLUSIONS These results bring novel data when related to the glutamatergic system in the SO-O group. This has suggested that the action mechanism of omega-3 was not dependent on glutamate levels in the CSF of the OVX group, but it played a regulatory role in the sham-operated animals. To confirm this, more studies are needed to explore this field when relating to the estrogen and glutamate receptor changes in specific brain regions.
Collapse
Affiliation(s)
| | | | | | - Marcia Gerhardt Martins
- Graduate Program in Genetic and Applied Toxicology, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Adriane Belló Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dione Silva Corrêa
- Graduate Program in Cellular and Molecular Biology, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Cellular and Molecular Biology, Lutheran University of Brazil (ULBRA), Canoas, Brazil.
| |
Collapse
|
9
|
Choi JE, Hong Y, Heo J, Park Y. N-3 PUFA ameliorated bone loss induced by postmenopausal depression following exposure to chronic mild stress and maternal separation by regulating neuronal processes. J Nutr Biochem 2021; 100:108909. [PMID: 34801691 DOI: 10.1016/j.jnutbio.2021.108909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/21/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Depression induced by chronic mild stress (CMS) reduced bone mass in ovariectomized (OVX) rats, and maternal separation (MS) during early life aggravated depression-induced bone mass destruction. N-3 polyunsaturated fatty acids (PUFA) have been shown to improve bone mass and depression, but the bone-protecting effects of n-3 PUFA were unclear in CMS+MS-induced depression models. The purpose of this study was to determine whether n-3 PUFA improved CMS+MS-induced postmenopausal bone loss via its antidepressant-like action. Rats were fed diets containing 0% of total energy intake (en %) of n-3 PUFA during lifetime or 1 en % n-3 PUFA during pre-weaning or post-weaning periods, or their entire lifetimes and were allocated to CMS or CMS+MS groups after OVX. Lifetime supply of n-3 PUFA enhanced bone mass and microarchitecture, and expression of runt-related transcription factor 2, while decreasing blood levels of amino-terminal cross-linked telopeptide of type 1 collagen and the expression of receptor activator of nuclear factor kappa Β ligand/osteoprotegerin, activating transcription factor 4, and adrenergic receptor β2. Lifetime supply of n-3 PUFA decreased levels of adrenocorticotropic hormone and corticosterone and the expression of corticotropin-releasing factor in the brain but increased expression of the glucocorticoid receptor, serotonin-2C receptor, cAMP response element-binding protein (CREB), and calmodulin kinase IV and serotonin levels. Supply of n-3 PUFA during the pre-and post-weaning periods had beneficial effects on the brain but not on the bones. Lifetime supply of n-3 PUFA ameliorated bone loss induced by chronic stress by regulating hypothalamic-pituitary-adrenal axis activity and serotonin-CREB signaling.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Yuni Hong
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Juhee Heo
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea.
| |
Collapse
|
10
|
Choi JE, Borkowski K, Newman JW, Park Y. N-3 PUFA improved post-menopausal depression induced by maternal separation and chronic mild stress through serotonergic pathway in rats-effect associated with lipid mediators. J Nutr Biochem 2021; 91:108599. [PMID: 33548474 DOI: 10.1016/j.jnutbio.2021.108599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Early life maternal separation (MS) increases the vulnerability to depression in rats with chronic mild stress (CMS). N-3 polyunsaturated fatty acids (PUFA) improved depressive behaviors in rats with acute stress; however, their effects on rats with MS+CMS were not apparent. The purpose of the present study was to investigate the hypothesis that lifetime n-3 PUFA supplementation improves post-menopausal depression through the serotonergic and glutamatergic pathways while modulating n-3 PUFA-derived metabolites. Female rats were fed diets of either 0% n-3 PUFA during lifetime or 1% energy n-3 PUFA during pre-weaning, post-weaning, or lifetime periods. Rats were allocated to non-MS or MS groups and underwent CMS after ovariectomy. N-3 PUFA increased brain n-3 PUFA-derived endocannabinoid/oxylipin levels, and reversed depressive behaviors. N-3 PUFA decreased blood levels of adrenocorticotropic hormone and corticosterone, and brain expressions of corticotropin-releasing factor and miRNA-218, which increased the expression of the glucocorticoid receptor. N-3 PUFA decreased the expression of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and prostaglandin E2, while increased the expression of miRNA-155. N-3 PUFA also increased brainstem serotonin levels and hippocampal expression of the serotonin-1A receptor, cAMP response element-binding protein (CREB), phospho-CREB, and brain-derived neurotrophic factor. However, n-3 PUFA did not affect brain expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtype 1, N-methyl-D-aspartate receptor subtype 2B, or miRNA-132. Moreover, n-3 PUFA exposure during lifetime caused greater effects than pre- and post-weaning periods. The present study suggested that n-3 PUFA improved depressive behaviors through serotonergic pathway while modulating the metabolites of n-3 PUFA in post-menopausal depressed rats with chronic stress.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Kamil Borkowski
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA
| | - John W Newman
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA; Department of Nutrition, University of California - Davis, Davis, California 95616, USA; Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea.
| |
Collapse
|
11
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
12
|
Rana AK, Sharma S, Singh D. Differential activation of Gsk-3β in the cortex and the hippocampus induces cognitive and behavioural impairments in middle-aged ovariectomized rat. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100019. [PMID: 35755628 PMCID: PMC9216607 DOI: 10.1016/j.cpnec.2020.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (Gsk-3β) aberration act as a crucial pathogenic factor in several neurological conditions. However its role in menopause associated behavioural impairments is still not unclear. The present study was designed to understand the role of Gsk-3β in the progression of neurobehavioural impairments in middle-aged ovariectomized (ovx) rats. The animals showed a significant impairment in spatial and recognition memory, along with anxiety and depression-like behaviour following 22 weeks of ovx. The genomic expression of ERα, ERβ, Nrf2, HO-1, TNFα, and IL-6 was altered in both the cortex and the hippocampus of ovx rats. Protein expression of p-Gsk-3β(Ser9) was significantly downregulated in the cortex after ovx. However, the hippocampus showed a surprisingly opposite trend in the levels of p-Gsk-3β(Ser9) as that of the cortex. Differential activation of Gsk-3β and its downstream proteins such as β-catenin and p-mTOR were also altered following ovx. The study concluded that differential activation of Gsk-3β, along with oxidative stress and neuroinflammation in the cortex and the hippocampus, leads to the induction of cognitive and behaviour impairments in ovx rats.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| |
Collapse
|
13
|
Choi JE, Kim EY, Park Y. N-3 PUFA improved pup separation-induced postpartum depression via serotonergic pathway regulated by miRNA. J Nutr Biochem 2020; 84:108417. [PMID: 32629237 DOI: 10.1016/j.jnutbio.2020.108417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Stress and ovarian hormone fluctuation are risk factors for postpartum depression (PPD). Previous studies suggested antidepressant-like effects of n-3 polyunsaturated fatty acids (PUFA), but their effect on dam animal with additional stress were not clear. The purpose of the present study was to investigate the hypothesis that n-3 PUFA improved PPD through the serotonergic and glutamatergic pathways by modulating miRNA. Rats were fed n-3 PUFA or control diet from gestation, with pup separation (PS) on postpartum days 2-14 and non-PS controls. N-3 PUFA reversed PS-induced depressive behaviors, including increased immobility, latencies to contact first pup and retrieve all pups, and decreased sucrose preference. N-3 PUFA also modulated the hypothalamic-pituitary-adrenal (HPA) axis by decreasing circulating levels of adrenocorticotropic hormone and corticosterone and expression of hypothalamic corticotrophin releasing factor and hippocampal miRNA-218 but increasing the hippocampal expression of glucocorticoid receptor. N-3 PUFA inhibited neuroinflammation by decreasing circulating levels of prostaglandin E2 and hippocampal expression of tumor necrosis factor-α, interleukin-6, and miRNA-155. In addition, n-3 PUFA up-regulated the serotonergic pathway by increasing circulating levels of serotonin and hippocampal expression of serotonin-1A receptor, cAMP response element binding protein (CREB), pCREB, brain-derived neurotrophic factor, and miRNA-182 but did not affect the glutamatergic pathway according to the hippocampal expression of N-methyl-D-aspartate receptor-2B. The present study suggested that n-3 PUFA improved PPD through the serotonergic pathway by modifying the HPA axis, neuroinflammation, and related miRNAs.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun-Young Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Correa CR, Schena C, Lopes SC, Prediger RD, Silva EL, Venske DKR, Ribeiro LC, Moreira JD. Combined effects of caloric restriction and fish oil attenuated anti-depressant and anxiolytic-like effects of fish oil: association with hippocampal BDNF concentrations. Behav Brain Res 2020; 393:112770. [PMID: 32561388 DOI: 10.1016/j.bbr.2020.112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Omega-3-enriched fish oil (FO) and caloric restriction (CR) are nutritional therapeutic approaches that exert an important impact on brain function, behavior, memory, and neuroprotection. Here, we investigate the synergic effects of both therapeutic approaches combined (CR + FO) on behavior (memory, anxiety-like behavior, antidepressant-like behavior), as well as its association with hippocampal brain-derived neurotrophic factor (BDNF) concentrations. Adult male Wistar rats were divided into four dietary groups: Control group (C) - chow ad libitum; CR group - 30 % CR, considering C group food intake; FO group - FO-enriched chow ad libitum; and CR + FO group - FO-enriched 30 % CR chow. After 12 weeks of dietary treatment, behavioural analysis set was conducted, and hippocampal BDNF concentrations were measured. FO group presented anxiolytic-like and antidepressant-like behaviors as well as improved memory in the Morris' water maze. These effects were attenuated by the combined CR + FO treatment. FO group also presented higher BDNF concentrations. There was a positive association between the number of entries in the platform quadrant in the MWM and hippocampal BDNF concentrations (β = 0.39; R² = 0.15; p = 0.042) and an inverse association between forced swim immobility time and BDNF concentrations (β = -0.39; R² = 0.15; p = 0.041). Taken together, our data showed that the 12-week FO dietary treatment promoted anxiolytic-like and antidepressant-like behaviors as well as memory improvement, and these effects were associated with BDNF concentrations. Synergic effects of interventions attenuated FO-related behavioral responses and BDNF concentrations and probably reduced hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Cinthia R Correa
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Claudia Schena
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Samantha C Lopes
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil; Medical Science Research Group - Biomedical and Clinical Investigation, Medicine Graduation Course, Centro Universitário para o Desenvolvimento do Alto Vale do Itajaí. Brazil
| | - Rui D Prediger
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - E L Silva
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Débora K R Venske
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - L C Ribeiro
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - J D Moreira
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil.
| |
Collapse
|
15
|
N-3 PUFA Have Antidepressant-like Effects Via Improvement of the HPA-Axis and Neurotransmission in Rats Exposed to Combined Stress. Mol Neurobiol 2020; 57:3860-3874. [PMID: 32613466 DOI: 10.1007/s12035-020-01980-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Early life and adulthood stress increase vulnerability for mental illness, and eventually trigger depression. N-3 polyunsaturated fatty acids (PUFA) have antidepressant effects, but their effect on rats exposed to combined stress has been not investigated. This study aimed to investigate whether n-3 PUFA supplementation had antidepressant-like effects in rat models of depression induced by a combination of chronic mild stress (CMS) and maternal separation (MS) through the modulation of the hypothalamic-pituitary-adrenal (HPA) axis and neurotransmission. Rats were fed the n-3 PUFA diet during the pre-weaning or post-weaning period or for lifetime, and allocated to different groups based on the type of induced stress: non-stress (NS), CMS + MS, or CMS alone. N-3 PUFA improved the depressive behaviors of the CMS alone and CMS + MS groups and modulated the HPA-axis by reducing the circulating adrenocorticotropic hormone, corticosterone, and corticotropin-releasing factor expression, and increasing glucocorticoid receptor expression. N-3 PUFA also modulated brain phospholipid fatty acid concentration, thus reducing inflammatory cytokines; improved the serotonergic pathway, thus increasing the expression of the brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), serotonin-1A receptor, and serum levels of serotonin; but did not affect glutamatergic neurotransmission. Furthermore, n-3 PUFA decreased the hippocampal expression of microRNA-218 and -132, increased that of microRNA-155, and its lifetime supplementation was more beneficial than pre- or post-weaning supplementation. This study suggests that n-3 PUFA has an antidepressant effect in rats exposed to combined stress, through the improvement of the HPA-axis abnormalities, the BDNF-serotonergic pathway, and the modulation of microRNAs.
Collapse
|
16
|
Yook JS, Lee M. Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids. Phys Act Nutr 2020; 24:14-18. [PMID: 32408409 PMCID: PMC7451843 DOI: 10.20463/pan.2020.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. METHODS In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. RESULTS The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. CONCLUSION This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), SeoulRepublic of Korea
| | - Minchul Lee
- Department of Sports Medicine, CHA University, PocheonRepublic of Korea
| |
Collapse
|
17
|
Nishi D, Su KP, Usuda K, Chang JPC, Hamazaki K, Ishima T, Sano Y, Ito H, Isaka K, Tachibana Y, Tanigaki S, Suzuki T, Hashimoto K, Matsuoka YJ. Plasma estradiol levels and antidepressant effects of omega-3 fatty acids in pregnant women. Brain Behav Immun 2020; 85:29-34. [PMID: 30776476 DOI: 10.1016/j.bbi.2019.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (PUFAs) reduce depressive symptoms through an anti-inflammatory effect, and injection of both omega-3 PUFAs and estradiol (E2) induces antidepressant-like effects in rats by regulating the expression of inflammatory cytokines. The aims of this study were to examine the association of increased E2 during pregnancy with depressive symptoms and with inflammatory cytokines in women who were and were not supplemented with omega-3 PUFAs. METHODS Pregnant women with Edinburgh Postnatal Depression Scale scores ≥9 were recruited at 12-24 weeks of gestation. The participants were randomly assigned to receive 1800 mg omega-3 fatty acids (containing 1206 mg eicosapentaenoic acid [EPA]) or placebo for 12 weeks. E2, omega-3 PUFAs, high-sensitivity C-reactive protein, interleukin-6, and adiponectin were measured at baseline and at the 12-week follow-up. Multivariable regression analyses were conducted to examine the association of the changes of E2 and omega-3 PUFAs with the changes in depressive symptoms and with the changes of inflammatory cytokines at follow-up by intervention group. RESULTS Of the 108 participants in the trial, 100 (92.6%) completed the follow-up assessment including blood sampling. Multivariable regression analyses revealed that the increase of EPA and E2 was significantly associated with a decrease in depressive symptoms among the participants assigned to the omega-3 group, but not among those assigned to the placebo group. Neither E2 nor any PUFAs were associated with a change in inflammatory cytokines. CONCLUSION Supplementation with EPA and increased levels of E2 during pregnancy might function together to alleviate antenatal depression through a mechanism other than anti-inflammation.
Collapse
Affiliation(s)
- Daisuke Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Department of Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Mental Health Policy, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Kentaro Usuda
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Department of Mental Health Policy, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jane Pei-Chen Chang
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yo Sano
- Toda Chuo Women's Hospital, Saitama, Japan
| | - Hiroe Ito
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Keiich Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiyuki Tachibana
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, Japan
| | - Shinji Tanigaki
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan; Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomo Suzuki
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yutaka J Matsuoka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, Tokyo, Japan
| |
Collapse
|
18
|
Okuda M, Fujita Y, Sugimoto H. The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice. Biol Pharm Bull 2020; 42:1694-1706. [PMID: 31582657 DOI: 10.1248/bpb.b19-00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and its prevention and treatment is a worldwide issue. Many natural components considered to be effective against AD have been identified. However, almost all clinical trials of these components for AD reported inconclusive results. We thought that multiple factors such as amyloid β (Aβ) and tau progressed the pathology of AD and that a therapeutic effect would be obtained by using multiple active ingredients with different effects. Thus, in this study, we treated ferulic acid (FA), phosphatidylserine (PS) and curcumin (Cur) in combination or alone to APPswe/PS1dE9 transgenic mice and evaluated cognitive function by Y-maze test. Consequently, only the three-ingredient group exhibited a significant improvement in cognitive function compared to the control group. In addition, we determined the amounts of Aβ, brain-derived neurotrophic factor (BDNF), interleukin (IL)-1β, acetylcholine and phosphorylated tau in the mouse brains after the treatment. In the two-ingredient (FA and PS) group, a significant decrease in IL-1β and an increasing trend in acetylcholine were observed. In the Cur group, significant decreases in Aβ and phosphorylated tau and an increasing trend in BDNF were observed. In the three-ingredient group, all of them were observed. These results indicate that the intake of multiple active ingredients with different mechanisms of action for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Michiaki Okuda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University.,Green Tech Co., Ltd
| | - Yuki Fujita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University.,Green Tech Co., Ltd
| | | |
Collapse
|
19
|
Tanichi M, Shimizu K, Enomoto S, Koga M, Toda H, Nagamine M, Suzuki E, Nibuya M. The effects of eicosapentaenoic acid dietary supplementation on behavioral parameters and expression of hippocampal brain-derived neurotrophic factor in an animal model of post-traumatic stress disorder. Eur J Pharmacol 2019; 865:172751. [DOI: 10.1016/j.ejphar.2019.172751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
|
20
|
Pawełczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Żurner N, Pawełczyk A. An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology (Berl) 2019; 236:2811-2822. [PMID: 31098654 PMCID: PMC6695351 DOI: 10.1007/s00213-019-05258-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
RATIONALE N-3 polyunsaturated fatty acids (n-3 PUFA) influence multiple biochemical mechanisms postulated in the pathogenesis of schizophrenia that may influence BDNF synthesis. OBJECTIVES A randomized placebo-controlled study was designed to compare the efficacy of a 26-week intervention composed of either 2.2 g/day of n-3 PUFA or olive oil placebo, with regard to symptom severity in first-episode schizophrenia patients. The secondary outcome measure of the study was to describe the association between n-3 PUFA clinical effect and changes in peripheral BDNF levels. METHODS Seventy-one patients aged 16-35 were enrolled in the study and randomly assigned to the following study arms: 36 to the EPA + DHA group and 35 to the placebo group. Plasma BDNF levels were assessed three times, at baseline and at weeks 8 and 26 of the intervention. BDNF levels were determined in plasma samples using Quantikine Human BDNF ELISA kit. Plasma BDNF level changes were further correlated with changes in the severity of symptoms in different clinical domains. RESULTS A significantly greater increase in plasma BDNF levels was observed in the intervention compared to the placebo group (Cohen's d = 1.54). Changes of BDNF levels inversely correlated with change in depressive symptoms assessed using the Calgary Depression Rating Scale in Schizophrenia (Pearson's r = - 0.195; p = 0.018). CONCLUSIONS The efficacy of a six-month intervention with n-3 PUFA observed in first-episode schizophrenia may be related to an increase in BDNF levels, which may be triggered by the activation of intracellular signaling pathways including transcription factors such as cAMP-reactive element binding protein.
Collapse
Affiliation(s)
- Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, ul. Czechoslowacka 8/10, 92-216, Lodz, Poland.
| | - Marta Grancow-Grabka
- 0000 0001 2165 3025grid.8267.bChild and Adolescent Psychiatry Unit, Central Teaching Hospital, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Elżbieta Trafalska
- 0000 0001 2165 3025grid.8267.bDepartment of Nutrition Hygiene and Epidemiology, Medical University of Lodz, ul. Jaracza 63, 90-251 Lodz, Poland
| | - Janusz Szemraj
- 0000 0001 2165 3025grid.8267.bDepartment of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Natalia Żurner
- 0000 0001 2165 3025grid.8267.bChild and Adolescent Psychiatry Unit, Central Teaching Hospital, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Agnieszka Pawełczyk
- 0000 0001 2165 3025grid.8267.bDepartment of Affective and Psychotic Disorders, Medical University of Lodz, ul. Czechoslowacka 8/10, 92-216 Lodz, Poland
| |
Collapse
|
21
|
Zemdegs J, Rainer Q, Grossmann CP, Rousseau-Ralliard D, Grynberg A, Ribeiro E, Guiard BP. Anxiolytic- and Antidepressant-Like Effects of Fish Oil-Enriched Diet in Brain-Derived Neurotrophic Factor Deficient Mice. Front Neurosci 2018; 12:974. [PMID: 30622454 PMCID: PMC6308198 DOI: 10.3389/fnins.2018.00974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances in the understanding of the therapeutic activity of antidepressant drugs, treatment-resistant depression is a public health issue prompting research to identify new therapeutic strategies. Evidence strongly suggests that nutrition might exert a significant impact on the onset, the duration and the severity of major depression. Accordingly, preclinical and clinical investigations demonstrated the beneficial effects of omega-3 fatty acids in anxiety and mood disorders. Although the neurobiological substrates of its action remain poorly documented, basic research has shown that omega-3 increases brain-derived neurotrophic factor (BDNF) levels in brain regions associated with depression, as antidepressant drugs do. In contrast, low BDNF levels and hippocampal atrophy were observed in animal models of depression. In this context, the present study compared the effects of long-lasting fish oil-enriched diet, an important source of omega-3 fatty acids, between heterozygous BDNF+/- mice and their wild-type littermates. Our results demonstrated lower activation of Erk in BDNF+/- mice whereas this deficit was rescued by fish oil-enriched diet. In parallel, BDNF+/- mice displayed elevated hippocampal extracellular 5-HT levels in relation with a local decreased serotonin transporter protein level. Fish oil-enriched diet restored normal serotonergic tone by increasing the protein levels of serotonin transporter. At the cellular level, fish oil-enriched diet increased the pool of immature neurons in the dentate gyrus of BDNF+/- mice and the latter observations coincide with its ability to promote anxiolytic- and antidepressant-like response in these mutants. Collectively, our results demonstrate that the beneficial effects of long-term exposure to fish oil-enriched diet in behavioral paradigms known to recapitulate diverse abnormalities related to the depressive state specifically in mice with a partial loss of BDNF. These findings contrast with the mechanism of action of currently available antidepressant drugs for which the full manifestation of their therapeutic activity depends on the enhancement of serotoninergic and BDNF signaling. Further studies are warranted to determine whether fish oil supplementation could be used as an add-on strategy to conventional pharmacological interventions in treatment-resistant patients and relevant animal models.
Collapse
Affiliation(s)
- Juliane Zemdegs
- Department of Physiology, Discipline of Nutrition Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Quentin Rainer
- Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Cindy P Grossmann
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Delphine Rousseau-Ralliard
- INRA, Unité Mixte de Recherche BDR, ENVA, Université Paris Saclay, Jouy-en-Josas, France.,INRA, Unité Mixte de Recherche 1154, Laboratoire Lipides Membranaires et Régulations Fonctionnelles du Coeur et des Vaisseaux, Jouy-en-Josas, France
| | - Alain Grynberg
- INRA, Unité Mixte de Recherche 1154, Laboratoire Lipides Membranaires et Régulations Fonctionnelles du Coeur et des Vaisseaux, Jouy-en-Josas, France
| | - Eliane Ribeiro
- Department of Physiology, Discipline of Nutrition Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno P Guiard
- Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| |
Collapse
|
22
|
Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, Sureda A, Daglia M, Tomczyk M, Sobarzo-Sanchez E, Xu S, Nabavi SM. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 2018; 135:37-48. [PMID: 29990625 DOI: 10.1016/j.phrs.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology and/or giving patients some symptomatic relief have been adopted for the last few decades. Various studies in recent years have shown the beneficial effects of omega-3 poly unsaturated fatty acids (PUFAs) through diverse mechanisms including anti-inflammatory effects. This review now assesses the potential of this class of compounds in NDs therapy through specific action against the mammalian target of rapamycin (mTOR) signaling pathway. The role of mTOR in neurodegenerative diseases and targeted therapies by PUFAs are discussed.
Collapse
Affiliation(s)
- Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi Katarmal, Almora, Uttarakhand, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14623, United States
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| |
Collapse
|
23
|
Zhou MM, Ding L, Wen M, Che HX, Huang JQ, Zhang TT, Xue CH, Mao XZ, Wang YM. Mechanisms of DHA-enriched phospholipids in improving cognitive deficits in aged SAMP8 mice with high-fat diet. J Nutr Biochem 2018; 59:64-75. [PMID: 29986309 DOI: 10.1016/j.jnutbio.2018.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/15/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
Recent studies have shown that a high-fat diet (HFD) is involved in both metabolic dysfunction and cognitive deficiency and that docosahexaenoic-acid-enriched phospholipids (DHA-PLs) have beneficial effects on obesity and cognitive impairment. However, there are only a few studies comparing differences between DHA-PC and DHA-PS in HFD-induced Alzheimer's disease (AD) models. After 8 weeks feeding with HFD, 10-month-old SAMP8 mice were fed with 1% (w/w) DHA-PC or 1% DHA-PS (biosynthesized from DHA-PC) for 8 weeks; we then tested the behavioral performances in the Barnes maze test and Morris maze test. The changes of the generation and accumulation of Aβ, oxidative stress, apoptosis, neuroinflammation and neurotrophic factors were also measured. The results indicated that both DHA-PC and DHA-PS significantly improved the metabolic disorders and cognitive deficits. Both DHA-PC and DHA-PS could ameliorate oxidative stress, and DHA-PS presented more notable benefits than DHA-PC on Aβ pathology, mitochondrial damage, neuroinflammation and neurotrophic factors; DHA-PS was for the first time found to increase the production of insoluble Aβ (less pathogenic) in this AD model. These data suggest that DHA-PLs can significantly improve cognitive deficiency, and the molecular mechanisms for this closely relate to the phospholipid polar groups.
Collapse
Affiliation(s)
- Miao-Miao Zhou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong-Xia Che
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jia-Qi Huang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China.
| |
Collapse
|
24
|
Marin R, Diaz M. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Front Neurosci 2018; 12:128. [PMID: 29559883 PMCID: PMC5845729 DOI: 10.3389/fnins.2018.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD). Part of these actions takes place through binding to estrogen receptors (ER) embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA) exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies, namely AD and Parkinson disease. Altogether, these findings indicate that E2 may participate in brain preservation through a dual membrane-related mechanism. On the one hand, E2 interacting with ER related signalosomes may protect against neurotoxic insults. On the other hand, E2 may exert lipostatic actions to preserve lipid balance in neuronal membrane microdomains. The different aspects of the emerging multifunctional role of estrogens in membrane-related signalosomes will be discussed in this review.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine, Faculty of Health Sciences, University of La Laguna, Tenerife, Spain.,Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain
| | - Mario Diaz
- Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, Tenerife, Spain
| |
Collapse
|