1
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
3
|
Sidsworth DA, Sellers SL, Reutens-Hernandez JP, Dunn EA, Gray SL, Payne GW. Impact of sex on microvascular reactivity in a murine model of diet-induced obesity and insulin resistance. Heliyon 2021; 7:e06217. [PMID: 33644477 PMCID: PMC7895723 DOI: 10.1016/j.heliyon.2021.e06217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/26/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
The association of obesity with cardiovascular disease is well established. However, the interplay of obesity and vascular dysfunction in peripheral tissues such as skeletal muscle, which plays a key in role metabolic homeostasis, requires further study. In particular, there is a paucity of data with regard to sex-differences. Therefore, using a murine model (C57BL/6) of high-fat diet-induced obesity and insulin resistance, we investigated changes in vascular function in gluteus maximus muscle of female and male mice. Diet-induced obesity resulted in alterations in microvascular function. Obese male mice displayed impaired vasoconstriction in second order arterioles compared to lean, male mice, whereas arterioles of obese, female mice displayed significant impairments of both vasodilation and vasoconstrictor responses compared to lean, female mice. Overall, this study identifies distinct differences in how obesity impacts the female and male murine response to skeletal muscle vascular function. This work advances our understanding of sex-specific risk of metabolic complications of obesity and indicates the need for expansion of this study as well as detailed investigation of sex-specific differences in obesity pathology in the future.
Collapse
Affiliation(s)
- Danielle A Sidsworth
- Northern Medical Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Stephanie L Sellers
- Centre for Heart Lung Innovation & Department of Radiology, University of British Columba & St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | | | - Elizabeth A Dunn
- Northern Medical Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Geoffrey W Payne
- Northern Medical Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| |
Collapse
|
6
|
Alaaeddine R, Elkhatib MAW, Mroueh A, Fouad H, Saad EI, El-Sabban ME, Plane F, El-Yazbi AF. Impaired Endothelium-Dependent Hyperpolarization Underlies Endothelial Dysfunction during Early Metabolic Challenge: Increased ROS Generation and Possible Interference with NO Function. J Pharmacol Exp Ther 2019; 371:567-582. [PMID: 31511364 DOI: 10.1124/jpet.119.262048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is a hallmark of diabetic vasculopathies. Although hyperglycemia is believed to be the culprit causing endothelial damage, the mechanism underlying early endothelial insult in prediabetes remains obscure. We used a nonobese high-calorie (HC)-fed rat model with hyperinsulinemia, hypercholesterolemia, and delayed development of hyperglycemia to unravel this mechanism. Compared with aortic rings from control rats, HC-fed rat rings displayed attenuated acetylcholine-mediated relaxation. While sensitive to nitric oxide synthase (NOS) inhibition, aortic relaxation in HC-rat tissues was not affected by blocking the inward-rectifier potassium (Kir) channels using BaCl2 Although Kir channel expression was reduced in HC-rat aorta, Kir expression, endothelium-dependent relaxation, and the BaCl2-sensitive component improved in HC rats treated with atorvastatin to reduce serum cholesterol. Remarkably, HC tissues demonstrated increased reactive species (ROS) in smooth muscle cells, which was reversed in rats receiving atorvastatin. In vitro ROS reduction, with superoxide dismutase, improved endothelium-dependent relaxation in HC-rat tissues. Significantly, connexin-43 expression increased in HC aortic tissues, possibly allowing ROS movement into the endothelium and reduction of eNOS activity. In this context, gap junction blockade with 18-β-glycyrrhetinic acid reduced vascular tone in HC rat tissues but not in controls. This reduction was sensitive to NOS inhibition and SOD treatment, possibly as an outcome of reduced ROS influence, and emerged in BaCl2-treated control tissues. In conclusion, our results suggest that early metabolic challenge leads to reduced Kir-mediated endothelium-dependent hyperpolarization, increased vascular ROS potentially impairing NO synthesis and highlight these channels as a possible target for early intervention with vascular dysfunction in metabolic disease. SIGNIFICANCE STATEMENT: The present study examines early endothelial dysfunction in metabolic disease. Our results suggest that reduced inward-rectifier potassium channel function underlies a defective endothelium-mediated relaxation possibly through alteration of nitric oxide synthase activity. This study provides a possible mechanism for the augmentation of relatively small changes in one endothelium-mediated relaxation pathway to affect overall endothelial response and highlights the potential role of inward-rectifier potassium channel function as a therapeutic target to treat vascular dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Rana Alaaeddine
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Mohammed A W Elkhatib
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Ali Mroueh
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Hosny Fouad
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Evan I Saad
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Marwan E El-Sabban
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Frances Plane
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Ahmed F El-Yazbi
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| |
Collapse
|