1
|
Svobodová G, Šadibolová M, Velecká E, Mráziková L, Vaculová P, Matoušková P, Kuneš J, Maletínská L, Boušová I. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models. Antioxidants (Basel) 2024; 13:1371. [PMID: 39594513 PMCID: PMC11591148 DOI: 10.3390/antiox13111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Vaculová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| |
Collapse
|
2
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ortega R, Liu B, Persaud SJ. Effects of miR-33 Deficiency on Metabolic and Cardiovascular Diseases: Implications for Therapeutic Intervention. Int J Mol Sci 2023; 24:10777. [PMID: 37445956 DOI: 10.3390/ijms241310777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally inhibit gene expression. These small molecules are involved in several biological conditions such as inflammation, cell growth and proliferation, and regulation of energy metabolism. In the context of metabolic and cardiovascular diseases, miR-33 is of particular interest as it has been implicated in the regulation of lipid and glucose metabolism. This miRNA is located in introns harboured in the genes encoding sterol regulatory element-binding protein (SREBP)-1 and SREBP-2, which are key transcription factors involved in lipid biosynthesis and cholesterol efflux. This review outlines the role of miR-33 in a range of metabolic and cardiovascular pathologies, such as dyslipidaemia, nonalcoholic fatty liver disease (NAFLD), obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA), and it provides discussion about the effectiveness of miR-33 deficiency as a possible therapeutic strategy to prevent the development of these diseases.
Collapse
Affiliation(s)
- Rebeca Ortega
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
4
|
Taherzadeh S, Rasoulian B, Khaleghi M, Rashidipour M, Mogharnasi M, Kaeidi A. Anti-obesity effects of aerobic exercise along with Rosa canina seed extract supplementation in rats: The role of irisin and adipolin. Obes Res Clin Pract 2023:S1871-403X(23)00038-8. [PMID: 37169705 DOI: 10.1016/j.orcp.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Aerobic exercise and some bioactive compounds in medicinal plants have anti-obesity effects and can suppress body weight. The aim of this study was to determine the anti-obesity effects of 6 weeks of aerobic exercise (AE) and supplementation of the hydroalcoholic extract of Rosa canina fruit seed (RC) in obese male rats. In this experimental study, 24 high-fat diet (HFD) obese male Wistar rats were used. The animals were randomly divided into 4 groups (6 rat in group), including 1. HFD (the control group), 2. HFD + AE, 3. HFD + RC and 4. HFD + AE + RC. An obesity protocol was implemented for 12 weeks with the consumption of HFD along with the consumption of water containing 1 % fructose. Afterwards, the animals were given access only to HFD food until the end of the study in all the groups. After the obesity protocol, 6 weeks of exercise (50-70 % VO2 max) and access to the extract (1 % of the consumed food) were given. Bodyweight, subcutaneous adipose tissue mass, and some serum lipid profiles were measured in the experimental groups. The serum levels of irisin and adipolin were evaluated by the ELISA method. Expression of FNDC5 and CTRP12 in adipose tissue were determined by real-time PCR. The findings of this study showed that body weight (P = 0.001), subcutaneous adipose tissue mass (P = 0.001), and lipid profile were significantly reduced in HFD + AE and HFD + AE + RC groups compared with the HFD group. Irisin was significantly increased in the HFD + AE and HFD + AE + RC groups compared with the HFD group (P = 0.019 and P = 0.001; respectively) and in the HFD + AE + RC group compared with the HFD + RC group (P = 0.004). Moreover, adipolin, expression of FNDC5 and CTRP12 were significantly increased in the HFD + AE + RC group compared with the HFD group (P = 0.004, P = 0.023, and P = 0.001; respectively). Altogether, HFD + AE with HFD + RC diet supplementation could reduce weight and the risks of obesity, at least, through the up-regulation of irisin and adipolin.
Collapse
Affiliation(s)
- Sedigheh Taherzadeh
- Department of Physical Education, Faculty of Human Sciences, Technical and Vocational University (TVU), Tehran, Islamic Republic of Iran
| | - Bahram Rasoulian
- Razi Herbal Medicines Research Center and Department of Physiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Islamic Republic of Iran.
| | - Mina Khaleghi
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Marzieh Rashidipour
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Islamic Republic of Iran
| | - Mehdi Mogharnasi
- Department of Sport Sciences, University of Birjand, Birjand, Islamic Republic of Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Islamic Republic of Iran.
| |
Collapse
|
5
|
Nouchi Y, Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ikeya M, Kageyama I, Wakasugi T, Teshigawara A, Hattori Y, Tsuboi Y, Ishikawa H, Suzuki K, Ohashi K. Maternal High-Fructose Corn Syrup Intake Impairs Corticosterone Clearance by Reducing Renal 11β-Hsd2 Activity via miR-27a-Mediated Mechanism in Rat Offspring. Nutrients 2023; 15:2122. [PMID: 37432276 DOI: 10.3390/nu15092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
We previously reported that maternal fructose consumption increases blood corticosterone levels in rat offspring. However, the underlying mechanism of action remains unclear. In the present study, we aimed to elucidate the molecular mechanism by which maternal high-fructose corn syrup (HFCS) intake increases circulating GC levels in rat offspring (GC; corticosterone in rodents and cortisol in humans). Female Sprague Dawley rats received HFCS solution during gestation and lactation. The male offspring were fed distilled water from weaning to 60 days of age. We investigated the activities of GC-metabolizing enzymes (11β-Hsd1 and 11β-Hsd2) in various tissues (i.e., liver, kidney, adrenal glands, muscle, and white adipose tissue) and epigenetic modification. 11β-Hsd2 activity decreased in the kidney of the HFCS-fed dams. Moreover, the epigenetic analysis suggested that miR-27a reduced Hsd11b2 mRNA expression in the kidney of offspring. Maternal HFCS-induced elevation of circulating GC levels in offspring may be explained by a decrease in 11β-Hsd2 activity via renal miR-27a expression. The present study may allow us to determine one of the mechanisms of GC elevation in rat offspring that is often observed in the developmental origins of the health and disease (DOHaD) phenomenon.
Collapse
Affiliation(s)
- Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu 761-0123, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Miyuki Ikeya
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
6
|
Zhang W, Raza SHA, Li B, Sun B, Wang S, Pant SD, Al-Abbas NS, Shaer NA, Zan L. miR-33a Inhibits the Differentiation of Bovine Preadipocytes through the IRS2-Akt Pathway. Genes (Basel) 2023; 14:529. [PMID: 36833456 PMCID: PMC9957011 DOI: 10.3390/genes14020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Several microRNAs (miRNAs) are known to participate in adipogenesis. However, their role in this process, especially in the differentiation of bovine preadipocytes, remains to be elucidated. This study was intended to clarify the effect of microRNA-33a (miR-33a) on the differentiation of bovine preadipocytes by cell culture, real-time fluorescent quantitative PCR (qPCR), Oil Red staining, BODIPY staining, and Western blotting. The results indicate that overexpression of miR-33a significantly inhibited lipid droplet accumulation and decreased the mRNA and protein expression of adipocyte differentiation marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and fatty acid-binding protein 4 (FABP4). In contrast, the interference expression of miR-33a promoted lipid droplet accumulation and increased the expression of marker genes. Additionally, miR-33a directly targeted insulin receptor substrate 2 (IRS2) and regulated the phosphorylation level of serine/threonine kinase (Akt). Furthermore, miR-33a inhibition could rescue defects in the differentiation of bovine preadipocytes and the Akt phosphorylation level caused by small interfering IRS2 (si-IRS2). Collectively, these results indicate that miR-33a could inhibit the differentiation of bovine preadipocytes, possibly through the IRS2-Akt pathway. These findings might help develop practical means to improve the quality of beef.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sameer D. Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Nouf S. Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nehad A. Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Petito G, Giacco A, Cioffi F, Mazzoli A, Magnacca N, Iossa S, Goglia F, Senese R, Lanni A. Short-term fructose feeding alters tissue metabolic pathways by modulating microRNAs expression both in young and adult rats. Front Cell Dev Biol 2023; 11:1101844. [PMID: 36875756 PMCID: PMC9977821 DOI: 10.3389/fcell.2023.1101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
8
|
Wehbe Z, Kreydiyyeh S. Cow's milk may be delivering potentially harmful undetected cargoes to humans. Is it time to reconsider dairy recommendations? Nutr Rev 2021; 80:874-888. [PMID: 34338770 DOI: 10.1093/nutrit/nuab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian evolution has shaped milk into a species-specific vehicle for post-natal development, continuing what began within the mother's womb. Increased consumption of the mother's breast milk is associated with the most adequate metabolic programming and lowers the incidence of the diseases of civilization during adulthood. An abundance of short sequences of RNA, known as microRNA, exists in mammalian breast milk, enclosed within robust small extracellular vesicles known as exosomes. These microRNAs can epigenetically regulate over 60% of human genes. When cow's milk is consumed by humans, the bovine exosomes are transported through the gastrointestinal tract, detected intact in the blood stream, and taken up by target cells, where they alter protein expression. The aim of this review was to highlight the role of dairy exosomes and microRNA, and of the type of dairy product consumed, in human diseases. Given that microRNAs are involved in a vast array of physiological processes and associated with several diseases, perhaps caution should be practiced with regard to human consumption of dairy, particularly for individuals within developmentally critical time frames, such as pregnant and lactating mothers, and young children.
Collapse
Affiliation(s)
- Zena Wehbe
- Z. Wehbe and S. Kreydiyyeh are with the Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Z. Wehbe and S. Kreydiyyeh are with the Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci 2021; 22:6969. [PMID: 34203484 PMCID: PMC8267750 DOI: 10.3390/ijms22136969] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic diseases represent a major challenge in world health. Metabolic syndrome is a constellation of disturbances affecting several organs, and it has been proposed to be a liver-centered condition. Fructose overconsumption may result in insulin resistance, oxidative stress, inflammation, elevated uric acid levels, increased blood pressure, and increased triglyceride concentrations in both the blood and liver. Non-alcoholic fatty liver disease (NAFLD) is a term widely used to describe excessive fatty infiltration in the liver in the absence of alcohol, autoimmune disorders, or viral hepatitis; it is attributed to obesity, high sugar and fat consumption, and sedentarism. If untreated, NAFLD can progress to nonalcoholic steatohepatitis (NASH), characterized by inflammation and mild fibrosis in addition to fat infiltration and, eventually, advanced scar tissue deposition, cirrhosis, and finally liver cancer, which constitutes the culmination of the disease. Notably, fructose is recognized as a major mediator of NAFLD, as a significant correlation between fructose intake and the degree of inflammation and fibrosis has been found in preclinical and clinical studies. Moreover, fructose is a risk factor for liver cancer development. Interestingly, fructose induces a number of proinflammatory, fibrogenic, and oncogenic signaling pathways that explain its deleterious effects in the body, especially in the liver.
Collapse
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City 07300, Mexico;
| | - Pedro López-Sánchez
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| |
Collapse
|
10
|
Hernández-Díazcouder A, González-Ramírez J, Giacoman-Martínez A, Cardoso-Saldaña G, Martínez-Martínez E, Osorio-Alonso H, Márquez-Velasco R, Sánchez-Gloria JL, Juárez-Vicuña Y, Gonzaga G, Sánchez-Lozada LG, Almanza-Pérez JC, Sánchez-Muñoz F. High fructose exposure modifies the amount of adipocyte-secreted microRNAs into extracellular vesicles in supernatants and plasma. PeerJ 2021; 9:e11305. [PMID: 34055478 PMCID: PMC8140597 DOI: 10.7717/peerj.11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. Methods 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. Results This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. Conclusion Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Guillermo Cardoso-Saldaña
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Eduardo Martínez-Martínez
- Laboratorio de Comunicación Celular y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Yaneli Juárez-Vicuña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Guillermo Gonzaga
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
11
|
Pan JH, Cha H, Tang J, Lee S, Lee SH, Le B, Redding MC, Kim S, Batish M, Kong BC, Lee JH, Kim JK. The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food Funct 2021; 12:656-667. [PMID: 33404569 DOI: 10.1039/d0fo02286a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limited studies reported mechanisms by which microRNAs (miRNA) are interlinked in the etiology of fructose-induced non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the significance of miRNAs in fructose-induced NAFLD pathogenesis through unbiased approaches. In experiment I, C57BL/6N mice were fed either water or 34% fructose for six weeks ad libitum. In experiment II, time course effects of fructose intervention were monitored using the same conditions; mice were killed at the baseline, fourth, and sixth weeks. Bioinformatic analyses for hepatic proteomics revealed that SREBP1 is the most significant upstream regulator influenced by fructose; miR-33-5p (miR-33) was identified as the key miRNA responsible for SREBP1 regulation upon fructose intake, which was validated by in vitro transfection assay. In experiment II, we confirmed that the longer mice consumed fructose, the more severe liver injury markers (e.g., serum AST) appeared. Moreover, hepatic Srebp1 mRNA expression was increased depending upon the duration of fructose consumption. Hepatic miR-33 was time-dependently decreased by fructose while serum miR-33 expression was increased; these observations indicated that miR-33 from the liver might be released upon cell damage. Finally we observed that fructose-induced ferroptosis might be a cause of liver toxicity, resulting from oxidative damage. Collectively, our findings suggest that fructose-induced oxidative damage induces ferroptosis, and miR-33 could be used as a serological biomarker of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
14
|
Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflamm Res 2020; 69:851-867. [DOI: 10.1007/s00011-020-01373-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
|
15
|
DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci 2020; 77:2079-2090. [PMID: 31760464 PMCID: PMC7440926 DOI: 10.1007/s00018-019-03390-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
16
|
Liu J, Li Y, Xue L, Fan M, Nie C, Wang Y, Zhang H, Qian H, Wang L. Circulating miR-27a-3p as a candidate for a biomarker of whole grain diets for lipid metabolism. Food Funct 2020; 11:8852-8865. [DOI: 10.1039/d0fo00830c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circulating miR-27a-3p was involved in the process of lipid synthesis under the dietary patterns of whole grain diets, and the expression of miR-27a-3p was decreased in serum, while it was elevated both in liver and ileum.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yan Li
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- State Key Laboratory of Food Science and Technology
| | - Lamei Xue
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Mingcong Fan
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Chenzhipeng Nie
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yu Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Hui Zhang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Haifeng Qian
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Li Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- State Key Laboratory of Food Science and Technology
| |
Collapse
|
17
|
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int J Mol Sci 2019; 20:ijms20122922. [PMID: 31207998 PMCID: PMC6628223 DOI: 10.3390/ijms20122922] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers.
Collapse
|