1
|
Attenuation of allodynia and microglial reactivity by inhibiting the degradation of 2-arachidonoylglycerol following injury to the trigeminal nerve in mice. Heliyon 2022; 8:e10034. [PMID: 35991988 PMCID: PMC9385535 DOI: 10.1016/j.heliyon.2022.e10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Endocannabinoids have an important role for the regulation of neuropathic pain. In our previous study, we observed that preventing the degradation of a endocannabinoid, 2-arachidonoylglycerol (2-AG), using an inhibitor of monoacylglycerol lipase (JZL184), attenuated neuropathic orofacial pain (NOP). The present study aimed to investigate mechanisms underlying JZL184-induced attenuation of NOP. We hypothesized that JZL184 may suppress microglial reactivity in the trigeminal spinal subnucleus caudalis (Vc) under NOP. The infraorbital nerve (ION) was hemisected to model NOP in mice, resulting in a significant reduction of mechanical head-withdrawal threshold (MHWT) on day 4 following the ION hemisection. Chronic systemic application of JZL184 at a concentration of 8 or 16 mg/kg/day for 4 days significantly attenuated the reduction of MHWT in mice exposed to NOP. Administering JZL184 at 4 mg/kg/day or its vehicle, however, did not attenuate the MHWT of mice with NOP. The reactivity of microglial cells in the Vc increased in mice with NOP compared to sham-operated controls. The application of JZL184 at 8 or 16 mg/kg/day for 4 days significantly reduced the increased microglial reactivity in the Vc. The changes of microglia under NOP were, by contrast, not reduced by application of the drug at 4 mg/kg/day or its vehicle. The results indicate that preventing 2-AG degradation may increase its accumulation in the Vc and normalize microglial reactivity under NOP, which may contribute to suppressing NOP. Microglia became reactive under neuropathic orofacial pain condition. An endocannabinoid degradation enzyme inhibitor, JZL184, effectively attenuated neuropathic pain. JZL184 attenuated microglial reactivity under neuropathic orofacial pain condition.
Collapse
|
2
|
Temporomandibular disorders and traumatic brain injury: Two sides of the same coin. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2021. [DOI: 10.1016/j.adoms.2021.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Wang Y, Cao P, Mei L, Yin W, Mao Y, Niu C, Zhang Z, Tao W. Microglia in the Primary Somatosensory Barrel Cortex Mediate Trigeminal Neuropathic Pain. Neuroscience 2019; 414:299-310. [PMID: 31181369 DOI: 10.1016/j.neuroscience.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
Trigeminal neuropathic pain (TGN) is an attacking, abrupt, electric-shock headache involving abnormal cortical activity. The neural mechanism underlying TGN remains elusive. In this study, we explored the role of microglia in the primary somatosensory barrel cortex (S1BF), which is a critical region for TGN, of a mouse model of TGN that displayed significant pain-related behaviors. Using electrophysiological recordings, we found robust neuronal hyperactivity in glutamatergic neurons of S1BF (GluS1BF). Chemogenetic inhibition of GluS1BF neurons significantly relieved mechanical allodynia in TGN mice. In naïve mice, chemogenetic activation of GluS1BF neurons induced pain sensitization. In addition, we found that microglia in the S1BF (microgliaS1BF) were significantly activated, with density and morphology changes. Intraperitoneal administration of minocycline, a microglia inhibitor, attenuated pain sensitization, and decreased GluS1BF neuronal activity. Together, these findings demonstrate the putative importance of microglia as a key regulator in TGN through actions on GluS1BF neuronal adaptation.
Collapse
Affiliation(s)
- Yuping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Peng Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Lisheng Mei
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Weiwei Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, PR China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, PR China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China.
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
4
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|
5
|
Ohshima H. Oral biosciences: The annual review 2017. J Oral Biosci 2018. [DOI: 10.1016/j.job.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int J Mol Sci 2017; 18:ijms18102051. [PMID: 28954391 PMCID: PMC5666733 DOI: 10.3390/ijms18102051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|