1
|
Nishida S, Azetsu Y, Chatani M, Karakawa A, Otake K, Sugiki H, Sakai N, Maruoka Y, Myers M, Takami M. Tacrolimus, FK506, promotes bone formation in bone defect mouse model. J Oral Biosci 2024; 66:391-402. [PMID: 38360372 DOI: 10.1016/j.job.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES Some studies have reported that tacrolimus (FK506), an immunosuppressant, may have positive effects on bone formation. However, the precise effects of FK506 on bone repair or osteoblasts remain inadequately elucidated, and limited research has explored the outcomes of its use in an in vivo mouse model. This study aims to examine the effects of FK506 on bone repair and osteoblast functions using bone defect and BMP-2-induced ectopic ossification mouse models, as well as cultured primary mouse osteoblasts treated with FK506. METHODS We established mouse models of femur bone defect and BMP-2-induced ectopic ossification to evaluate the effect of FK506 on new bone formation, respectively. Additionally, primary mouse osteoblasts were cultured with FK506 and examined for gene expressions related to osteoblast differentiation. RESULTS While FK506 promoted the repair of bone defect areas in the femur of the bone defect mouse model, it also led to widespread abnormal bone formation outside the intended area. Additionally, following the implantation of a collagen sponge containing BMP-2 into mouse muscle tissue, FK506 was found to promote ectopic ossification and enhance BMP-2-induced osteoblast differentiation in vitro. Our findings also revealed that FK506 increased the number of immature osteoblasts in the absence of BMP-2 without affecting osteoblast differentiation. Furthermore, direct effects were observed, reducing the ability of osteoblasts to support osteoclastogenesis. CONCLUSIONS These results indicate that FK506 increases new bone formation during bone repair and influences the proliferation of immature osteoblasts, as well as osteoblast-supported osteoclastogenesis.
Collapse
Affiliation(s)
- Satoko Nishida
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Medical and Dental Cooperative Dentistry, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kai Otake
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Endodontology, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan
| | - Hidemitsu Sugiki
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Dental Education, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yasubumi Maruoka
- Totsuka Kyoritsu Daini Hospital, 579-1 Totsuka, Yokohama, Kanagawa, 244-0817, Japan
| | - Mie Myers
- Department of Medical and Dental Cooperative Dentistry, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
3
|
Salga M, Samuel SG, Tseng HW, Gatin L, Girard D, Rival B, Barbier V, Bisht K, Shatunova S, Debaud C, Winkler IG, Paquereau J, Dinh A, Genêt G, Kerever S, Abback PS, Banzet S, Genêt F, Lévesque JP, Alexander KA. Bacterial Lipopolysaccharides Exacerbate Neurogenic Heterotopic Ossification Development. J Bone Miner Res 2023; 38:1700-1717. [PMID: 37602772 DOI: 10.1002/jbmr.4905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-β (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marjorie Salga
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Selwin G Samuel
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, India
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laure Gatin
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
- Department of Orthopedic Surgery, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Valérie Barbier
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kavita Bisht
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Svetlana Shatunova
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Charlotte Debaud
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Ingrid G Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Julie Paquereau
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Aurélien Dinh
- Department of Infectious Diseases, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Guillaume Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Sébastien Kerever
- Department of Anesthesiology and Critical Care, Lariboisière University Hospital, AP-HP, Paris, France
| | - Paer-Sélim Abback
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP, Clichy, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - François Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
4
|
Zhang L, Zhang Y, Miao M, Hu S, Wang X, Zhao L, Huang X, Cao G, Shou D. Erxian herbal pair enhances bone formation in infected bone nonunion models and attenuates lipopolysaccharide-induced osteoblastinhibition by regulating miRNA-34a-5p. Bioengineered 2022; 13:14339-14356. [PMID: 36694425 PMCID: PMC9995130 DOI: 10.1080/21655979.2022.2085388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bacterium-induced inflammatory responses cause bone nonunion. Although antibiotics suppress infection, bone loss after antibacterial treatment remains a critical challenge. Erxian herbal pair (EHP) has been proven effective in promoting bone formation. Our study aimed to investigate the effect of EHP on bone repair after anti-infection treatment, explore its effect on a lipopolysaccharide (LPS)-induced osteoblast. We evaluated effects of EHP on bone repair with Micro-CT, and morphology detecting. Chemical constituents of EHP and EHP-containing serum (EHP-CS) were identified by UHPLC-Q/TOF-MS. In addition, osteoblast induced by LPS was established and administrated with EHP-CS. Cell proliferationwas assessed by MTT. Target prediction identified SMAD2 as a potential target of miRNA-34a-5p. MiRNA mimic, inhibitor and siRNA were transiently transfected into osteoblasts. The mRNA levels and protein expressions of miRNA-34a-5p, BMP2, Runx2, SMAD2 were assessed. The results showed that the main biocactivity ingredients in EHP-CS were Baohuoside Ι and Orcinol Glucoside. EHP could promote bone remolding after anti-infection therapy and restore the activity of LPS-induced osteoblasts. Moreover, miRNA-34a-5p was dramatically downregulated and SMAD2 was upregulated after LPS stimulation, while EHP resisted the inhibition of LPS by promoting miRNA-34a-5p, ALP, and BMP2 expressions. Whereas downregulation of miRNA-34a-5p reversed these effects. Silencing endogenous SMAD2 expression markedly promoted BMP2 and ALP activity and enhanced osteogenesis. Taken together, EHP restored LPS-induced bone loss by regulating miRNA-34a-5p levels and repressing its target gene SMAD2. EHP might be a potential adjuvant herbal remedy for the treatment of bone nonunion, and miRNA-34a-5p is a novel target for controlling bone and metabolic diseases.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.,Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China
| | - Yang Zhang
- Institute of Orthopadics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053,China
| | - Maomao Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shaoqi Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.,Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| |
Collapse
|
5
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|