1
|
Song D, Niu J, Zhang Z, Sun Z, Wang D, Li J, Yang B, Ling N, Ji C. Purple Sweet Potato Polysaccharide Exerting an Anti-inflammatory Effect via a TLR-Mediated Pathway by Regulating Polarization and Inhibiting the Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2165-2177. [PMID: 38233194 DOI: 10.1021/acs.jafc.3c07511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Purple sweet potato polysaccharide (PSPP-1) is a novel glucan; this study aimed to examine the anti-inflammatory effect of PSPP-1 and elucidate its potential mechanisms. Lipopolysaccharide (LPS)-induced RAW264.7 was used as the model of inflammation, cell viability, and levels of nitric oxide (NO), reactive oxygen species (ROS), and calcium ion (Ca2+) were analyzed. ELISA and qPCR were used to assess the productions and mRNA expression of cytokines, and Western blotting was used to assess protein expressions in the TLR-mediated pathway, macrophage polarization, and inflammasome activation. The results demonstrated PSPP-1 inhibited cell proliferation and markedly decreased NO, ROS, and Ca2+ levels. Moreover, PSPP-1 suppressed the secretions and mRNA expressions of pro-inflammatory cytokines and increased those of anti-inflammatory cytokines. Furthermore, PSPP-1 could exert anti-inflammatory effects through different pathways mediated by both TLR2 and TLR4, which modulated the expressions of essential proteins in the myeloid differentiation factor 88 (MyD88)-dependent and toll/IL-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)-dependent signaling pathways. PSPP-1 even regulated the polarization of M1/M2 macrophages and inhibited the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation. These findings indicate that PSPP-1 can suppress LPS-induced inflammation via multiple pathways and may be a potential agent for therapeutic inflammation-related pathophysiological processes and disorders.
Collapse
Affiliation(s)
- Dongxue Song
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Junbo Niu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiwei Sun
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Di Wang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Jun Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bo Yang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
2
|
Pan Y, Lv H, Zhang F, Chen S, Cheng Y, Ma S, Hu H, Liu X, Cai X, Fan F, Gong S, Chen P, Chu Q. Green tea extracts alleviate acetic acid-induced oral inflammation and reconstruct oral microbial balance in mice. J Food Sci 2023; 88:5291-5308. [PMID: 37889079 DOI: 10.1111/1750-3841.16818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Oral cavity contains the second largest microbial community in the human body. Due to the highly vascularized feature of mouth, oral microbes could directly access the bloodstream and affect the host healthy systemically. The imbalance of oral microbiota is closely related to various oral and systemic diseases. Green tea extracts (GTE) mainly contain tea polyphenols, alkaloids, amino acid, flavones, and so on, which equipped with excellent anti-inflammatory activities. Previous studies have demonstrated the beneficial effects of GTE on oral health. However, most researches used in vitro models or focused on limited microorganisms. In this study, the regulatory effect of GTE on oral microbiome and the alleviative effect on oral inflammation in vivo were evaluated. The results showed that GTE could efficiently alleviate the inflammations of the tongue, cheek pouch, as well as throat. GTE effectively inhibited the activation of NF-κB through the upregulation of the anti-inflammatory cytokine interleukin (IL)-10, consequently leading to reduced expression of pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. The indexes of spleen and thymus were also elevated by GTE in stomatitis mice. Moreover, GTE promoted the growth of probiotics Lactobacillus and Bacillus, inhibited the reproduction of pathogens Achromobacter, reversing the microbiota disorders in oral cavity. This study not only presents a novel approach for enhancing oral microecology but also facilitates the wider adoption of tea consumption.
Collapse
Affiliation(s)
- Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fuyuan Zhang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuxi Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yan Cheng
- Hangzhou Real Taste Tea Culture Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Hao Hu
- College of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiyu Liu
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Xiaoyong Cai
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|