1
|
Qu D, He S, Chen L, Ye Y, Ge Q, Cong H, Jiang N, Ha Y. Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Front Chem 2022; 10:1055865. [PMID: 36339046 PMCID: PMC9634479 DOI: 10.3389/fchem.2022.1055865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 08/02/2024] Open
Abstract
5-Hydroxymethylfurfural (HMF) has aroused considerable interest over the past years as an important biomass-derived platform molecule, yielding various value-added products. The conventional HMF conversion requires noble metal catalysts and harsh operating conditions. On the other hand, the electrocatalytic conversion of HMF has been considered as an environmentally benign alternative. However, its practical application is limited by low overall energy efficiency and incomplete conversion. Paired electrolysis and highly efficient electrocatalysts are two viable strategies to address these limitations. Herein, an overview of coupled electrocatalytic HMF hydrogenation or hydrogen evolution reaction (HER) with HMF oxidation as well as the associated electrocatalysts are reviewed and discussed. In this mini-review, a brief introduction of electrocatalytic HMF upgrading is given, followed by the recent advances and challenges of paired electrolysis with an emphasis on the integration HMF electrohydrogenation with HMF electrooxidation. Finally, a perspective for a future sustainable biomass upgrading community based on electrocatalysis is proposed.
Collapse
Affiliation(s)
- Dalong Qu
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lianhua Chen
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Qingmei Ge
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Hang Cong
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Nan Jiang
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Li Y, Shao W, Ma Z, Zheng M, Song H. Performance Analysis of a HT-PEMFC System with 6FPBI Membranes Doped with Cross-Linkable Polymeric Ionic Liquid. Int J Mol Sci 2022; 23:9618. [PMID: 36077019 PMCID: PMC9456169 DOI: 10.3390/ijms23179618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, a high-temperature proton-exchange membrane fuel cell (HT-PEMFC) system using fluorine-containing polybenzimidazole (6FPBI) composite membranes doped with cross-linkable polymer ionic liquid (cPIL) is developed and studied. The reliability of the model is verified by a comparison with the experimental data. The performance of the HT-PEMFC system using 6FPBI membranes with different levels of cPIL is analyzed. The results show that when the HT-PEMFC uses 6FPBI membranes with a cPIL content of 20 wt % (6FPBI-cPIL 20 membranes), the single cell power density is 4952.3 W·m-2. The excessive cPIL content will lead to HT-PEMFC performance degradation. The HT-PEMFC system using the 6FPBI-cPIL 20 membranes shows a higher performance, even at higher temperatures and pressures, than the systems using 6FPBI membranes. In addition, the parametric study results suggest that the HT-PEMFC system should be operated at a higher inlet temperature and hydrogen pressure to increase system output power and efficiency. The oxygen inlet pressure should be reduced to decrease the power consumption of the ancillary equipment and improve system efficiency. The proposed model can provide a prediction for the performance of HT-PEMFC systems with the application of phosphoric-acid-doped polybenzimidazole (PA-PBI) membranes.
Collapse
Affiliation(s)
| | | | - Zheshu Ma
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | | |
Collapse
|
3
|
Nasrollahzadeh M, Shafiei N, Orooji Y. Magnetic chitosan stabilized Cu(II)-tetrazole complex: an effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci Rep 2022; 12:6724. [PMID: 35468913 PMCID: PMC9038735 DOI: 10.1038/s41598-022-10591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
In the present research, a recyclable catalyst has been prepared via a simple approach using chitosan as a linear polysaccharide. This paper reports the synthesis of novel copper(II) complex of 5-phenyl-1H-tetrazole immobilized on magnetic chitosan (MCS@PhTet@Cu(II)) as an effective catalyst. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma mass spectrometry (ICP-MS) techniques were applied for the characterization of the catalyst. The catalytic activity of MCS@PhTet@Cu(II) was evaluated in the ultrasound-assisted synthesis of 3-imino-2-phenylisoindolin-1-one derivatives via the reaction between benzoyl chloride and arylcyanamides in ethanol at ambient temperature. Utilizing a wide variety of arylcyanamides under mild conditions, no use of toxic organic solvents, moderate reaction time, high yields along with catalyst excellent reusability and easy separation of the products without any tedious separation techniques, made this method a novel and simple process. The resulting heterogeneous catalyst showed valuable advantages such as easier work-up, better stability, and greater separation ability using an external magnet. The catalyst showed high efficacy and recyclability even after five cycles with no significant loss of its efficacy. The present methodology provides a path for the preparation of structurally diverse heterocyclic compounds, which may exhibit important biological activity.
Collapse
Affiliation(s)
| | - Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, 37185-359, Qom, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
4
|
Yu Z, Ma H, Boer ED, Wu W, Wang Q, Gao M, Vo DVN, Guo M, Xia C. Effect of microwave/hydrothermal combined ionic liquid pretreatment on straw: Rumen anaerobic fermentation and enzyme hydrolysis. ENVIRONMENTAL RESEARCH 2022; 205:112453. [PMID: 34843726 DOI: 10.1016/j.envres.2021.112453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
To explore green technology for wheat straw pretreatment, this study combined the microwave or hydrothermal with ionic liquid ([Bmim][OAc]) on wheat straw followed by rumen fermentation. The optimal conditions of microwave assisted ionic liquids pretreatment (M-I) and hydrothermal assisted ionic liquids pretreatment (H-I) treatment were 360 W and 200 °C, and the corresponding lignin removal rates reached 35.3% and 25.4%, respectively. Rumen fermentation showed that the highest volatile fatty acid (VFA) yield was found in M-I group, followed by H-I group at 234 and 180 mg/g, respectively. As for enzymatic hydrolysis, the saccharification rates at 3 days of M-I (360 W) and H-I (200 °C) were determined to be 393 and 320 mg/g. The optimal ionic liquid dosage was determined to be 30% in consideration of cost and VFA conversion rate. M-I pretreatment plus the rumen fermentation enjoyed the benefit of no enzyme addition and high product recovery, which was worth further investigating.
Collapse
Affiliation(s)
- Ziqiang Yu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Emilia den Boer
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Wenyu Wu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755 414, Viet Nam
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
5
|
Zhang M, Ramya G, Brindhadevi K, Alsehli M, Elfasakhany A, Xia C, Lan Chi NT, Pugazhendhi A. Microwave assisted biodiesel production from chicken feather meal oil using Bio-Nano Calcium oxide derived from chicken egg shell. ENVIRONMENTAL RESEARCH 2022; 205:112509. [PMID: 34871596 DOI: 10.1016/j.envres.2021.112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Environmental concerns have initiated the search for greener measures to mitigate pollution issues. Bio Nano CaO was synthesized by reducing CaO extracted from chicken egg shell using tea decoction. The synthesized material was characterized by physico-chemical techniques such as XRD, TGA, BET surface area analyser, TGA and SEM techniques. XRD studied confirmed the crystalline nature of material. The prepared material was found to be stable till 450 οC from TGA study. The SEM pictures displayed uniform and discrete particles which portrays the high probable sites that maximises the catalytic activity. The optimization of microwave assisted Biodiesel synthesis from chicken feather oil through Transesterification process using the bio-synthesized catalytic material was the main aim of the study. A 500 W microwave irradiation of Chicken feather meal oil using 8:1 Methanol:Oil input, 1% Bio Nano CaO concentration, 5 min of reaction time resulted in 95% conversion of chicken feather meal oil into chicken feather meal methyl esters. The Biodiesel was showed low viscosity (4.15 mm2/s), high heating value (50 MJ/kg), high flash point (153οC), reasonable pour point (12 οC) and good cetane number (50 min). The future works will be concentrated on the engine studies related to Torque, fuel consumption, emission data by using the synthesized Biodiesel.
Collapse
Affiliation(s)
- Minglong Zhang
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Anhui Hongsen Hi-tech Forestry Co., Ltd, Bozhou, 233600, China
| | - Ganesan Ramya
- Department of Chemistry, St. Josepphs Institute of Technology, Chennai, 119, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Mishal Alsehli
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Changlei Xia
- Anhui Hongsen Hi-tech Forestry Co., Ltd, Bozhou, 233600, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Nguyen Thuy Lan Chi
- Van Lang school of Engineering and Technology, Van Lang University, Ho Chi Minh city, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Zhang M, Ramya G, Brindhadevi K, Elfasakhany A, Khalifa AS, Xia C, Manigandan S, Pugazhendhi A. Comparison of cracking activity of the core-shell composite MCM-41/HY & MCM-48/HY catalysts in the synthesis of organic liquid fuel from Mahua oil. ENVIRONMENTAL RESEARCH 2022; 205:112474. [PMID: 34863683 DOI: 10.1016/j.envres.2021.112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
A synergistic catalyst was architectured using the hydrothermal crystallization method. Mesoporous material with pore diameter less than 20 nm was grown on the microporous Zeolite HY. The catalysts were characterized by XRD, ICP-OES, BET, TPD, SEM and TEM techniques. The SEM picture portrayed excellent core - shell morphology and TEM analysis corresponded to the XRD reports. Mahua oil was cracked in a pilot scale reactor over the synthesized catalysts at an optimized reaction condition (Temperature: 400 οC; WHSV: 4.6 h-1). The gaseous and liquid products of reaction were analyzed by Residual Gas analyzer and GCMS respectively. The NMR spectral analysis of fuel showed low traces of aromatics. The produced fuel was analyzed for its significant properties like calorific value, fire point, flash point and viscosity.
Collapse
Affiliation(s)
- Minglong Zhang
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ganesan Ramya
- Department of Chemistry, St. Joseph's Institute of Technology, Chennai, 119, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amany Salah Khalifa
- Department of Clinical Pathology and Pharmaceutics, College of Pharmacy, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - S Manigandan
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Gao C, Ma K, Zhao Z. Encapsulated NiCo
2
S
4
‐based straight bamboo‐shaped N‐CNT as efficient and stable oxygen electrocatalysts. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Cunyuan Gao
- School of Material Science and Engineering University of Jinan Jinan Shandong China
| | - Kongshuo Ma
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin China
| | - Zhenlu Zhao
- School of Material Science and Engineering University of Jinan Jinan Shandong China
- Department of Bionano Engineering Hanyang University Ansan South Korea
| |
Collapse
|
8
|
Ge S, Manigandan S, Mathimani T, Basha S, Xia C, Brindhadevi K, Unpaprom Y, Whangchai K, Pugazhendhi A. An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152418. [PMID: 34923011 DOI: 10.1016/j.scitotenv.2021.152418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The need for an alternative fuel has been growing swiftly owing to the extravagant use of fossil fuels as a sole energy source for all purposes. This paper investigates the performance, emission and noise characteristics of cellulosic biofuel. A series of tests were conducted in a single cylinder, four stroke DI engine to determine the performance measuring factors such as brake thermal efficiency (BTE), brake power (BP), brake specific fuel consumption (BSFC) and emission factors such as CO emission, NO emission, CO2 emission and smoke and then, the HC emission rates were also measured. All tests were carried out at different load conditions of 25%, 50%, 75% and 100% with the constant speed of 1500 rpm. The fuel blends taken for the tests were diesel, E5, E10, E15 and E20. The E20 comparatively showed lower performance than all other fuel blends. However, when considering CO and smoke emission, the E20 fuel blends produced better reduced emission. The lower-level ethanol diesel blend showed better BT as well as BTE and BSFC. From the above findings, it is clear and evident that cellulosic biodiesel blends can be an optimal solution to meet the ongoing energy demands.
Collapse
Affiliation(s)
- Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - S Manigandan
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Sakeenabi Basha
- Department of Community Dentistry, Faculty of Dentistry, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai 50200, Thailand
| | - Kanda Whangchai
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Sheng Y, Mathimani T, Brindhadevi K, Basha S, Elfasakhany A, Xia C, Pugazhendhi A. Combined effect of CO 2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151969. [PMID: 34843758 DOI: 10.1016/j.scitotenv.2021.151969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Different CO2 concentration such as 0.03, 5, 10 and 15% and low-cost urea repletion/starvation in Chlorella vulgaris on growth, total and non-polar lipid content and fatty acid composition was studied. Chlorella vulgaris grown at 0.03% CO2 apparently revealed inferior biomass yield 0.55 g/L on 14th day compared to CO2 supplemented cells. In the case of CO2 supply, 15% CO2 has unveiled higher biomass yield at about 1.83 g/L on day 12 whereas biomass yield for 5 and 10% CO2 supplemented cells was 1.61 and 1.73 g/L, respectively on 12th day of cultivation. The biomass productivity (g) per liter per day was 32 mg in control condition whereas it was 125, 134 and 144 mg/L/d in 5, 10 and 15% CO2 supplied cells, respectively. Lipid content of the strain grown at control, 5, 10 and 15% CO2 was 21.2, 22.1, 23.4 and 24.6%, respectively and however, without CO2 addition in low-cost urea repleted and urea depleted medium grown cells revealed 21.2 and 24.2%, respectively. Interestingly, strain grown at 15% CO2 supply in urea deplete medium yielded 28.7% lipid and contribution of non-polar lipids in total lipids is 69.7%. Further, the fatty acid composition of the strain grown in 15% CO2 supply in urea depleted medium showed C16:0, C16:1, C18:1 and C18:3 in the level of 30.12, 9.98, 23.43, and 11.97%, respectively compared to control and urea amended condition.
Collapse
Affiliation(s)
- Yequan Sheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sakeenabi Basha
- Department of Community Dentistry, Faculty of Dentistry, Taif University, PO box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Guo H, Higashiguchi R, Abe Y, Smith RL. Effective conversion of fructose to 5-ethoxymethylfurfural with brønsted acid site (S/Cl)-functional carbon catalysts. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Li Y, Li D, Ma Z, Zheng M, Lu Z. Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System. MEMBRANES 2022; 12:72. [PMID: 35054598 PMCID: PMC8779639 DOI: 10.3390/membranes12010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022]
Abstract
Since the high temperature proton exchange membrane fuel cells (HT-PEMFC) stack require a range of auxiliary equipments to maintain operating conditions, it is necessary to consider operation of related components in the design of HT-PEMFC systems. In this paper, a thermodynamic model of a vehicular HT-PEMFC system using phosphoric acid doped polybenzimidazole membrane is developed. The power distribution and exergy loss of each component are derived according to thermodynamic analysis, where the stack and heat exchanger are the two components with the greatest exergy loss. In addition, ecological functions and improvement potentials are proposed to evaluate the system performance better. On this basis, the effects of stack inlet temperature, pressure, and stoichiometric on system performance are analyzed. The results showed that the energy efficiency, exergy efficiency and net output power of the system achieved the maximum when the inlet gases temperature is 406.1 K. The system performance is better when the cathode inlet pressure is relatively low and the anode inlet pressure is relatively high. Moreover, the stoichiometry should be reduced to improve the system output performance on the basis of ensuring sufficient gases reaction in the stack.
Collapse
Affiliation(s)
| | | | - Zheshu Ma
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (D.L.); (M.Z.); (Z.L.)
| | | | | |
Collapse
|
12
|
Jian S, Cheng Y, Ma X, Guo H, Hu J, Zhang K, Jiang S, Yang W, Duan G. Excellent fluoride removal performance by electrospun La–Mn bimetal oxide nanofibers. NEW J CHEM 2022. [DOI: 10.1039/d1nj04976c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel La–Mn bimetal oxide nanofiber adsorbent was fabricated by the combination of an electrospinning approach and heat treatment in a simple strategy to remove fluoride ions from water.
Collapse
Affiliation(s)
- Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Yiting Cheng
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongtao Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Kaiyin Zhang
- College of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Gaigai Duan
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|