1
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
2
|
Kumar H, Kimta N, Guleria S, Cimler R, Sethi N, Dhanjal DS, Singh R, Duggal S, Verma R, Prerna P, Pathera AK, Alomar SY, Kuca K. Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171142. [PMID: 38387576 DOI: 10.1016/j.scitotenv.2024.171142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Global imperatives have recently shown a paradigm shift in the prevailing resource utilization model from a linear approach to a circular bioeconomy. The primary goal of the circular bioeconomy model is to minimize waste by effective re-usage of organic waste and efficient nutrient recycling. In essence, circular bioeconomy integrates the fundamental concept of circular economy, which strives to offer sustainable goods and services by leveraging biological resources and processes. Notably, the circular bioeconomy differs from conventional waste recycling by prioritizing the safeguarding and restoration of production ecosystems, focusing on harnessing renewable biological resources and their associated waste streams to produce value-added products like food, animal feed, and bioenergy. Amidst these sustainability efforts, fruit seeds are getting considerable attention, which were previously overlooked and commonly discarded but were known to comprise diverse chemicals with significant industrial applications, not limited to cosmetics and pharmaceutical industries. While, polyphenols in these seeds offer extensive health benefits, the inadequate conversion of fruit waste into valuable products poses substantial environmental challenges and resource wastage. This review aims to comprehend the known information about the application of non-edible fruit seeds for synthesising metallic nanoparticles, carbon dots, biochar, biosorbent, and biodiesel. Further, this review sheds light on the potential use of these seeds as functional foods and feed ingredients; it also comprehends the safety aspects associated with their utilization. Overall, this review aims to provide a roadmap for harnessing the potential of non-edible fruit seeds by adhering to the principles of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sampy Duggal
- Department of Ayurveda & Health Sciences, Abhilashi University, Mandi 175028, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Prerna Prerna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | | | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Liang Y, Jin X, Xu X, Wu Y, Ghfar AA, Lam SS, Sonne C, Aminabhavi TM, Xia C. A novel porous lignocellulosic standing hierarchical hydroxyapatite for enhanced aqueous copper(II) removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168873. [PMID: 38016558 DOI: 10.1016/j.scitotenv.2023.168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.
Collapse
Affiliation(s)
- Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinshuai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
4
|
Xie S, Hu J, Li K, Zhao Y, Ma N, Wang Y, Jin Y, Guo G, Kumar R, Li J, Huang J, Tian H. Substantial and efficient adsorption of heavy metal ions based on protein and polyvinyl alcohol nanofibers by electrospinning. Int J Biol Macromol 2023; 253:126536. [PMID: 37634775 DOI: 10.1016/j.ijbiomac.2023.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The adverse effects of heavy metal pollutants in wastewater have threatened human health in recent decades. Therefore, the development of absorbents for such pollutants is essential to overcome these problems. Electrospun nanofibers are often used for wastewater treatment owing to their high porosity and high specific surface area. Zein from plants and collagen from animals are vulnerable to moisture, which limits its broad application in practice. However fully biodegradable polyvinyl alcohol (PVA), which is soluble in water, can be mixed with protein individually to overcome the limitation. In this work, the two proteins described above and PVA were combined to prepare protein nanofibers by electrospinning technology, which could achieve adsorption of Cu2+. As the protein content increased, the adsorption properties of the obtained nanofibers for Cu2+ showed a rising and then decreasing trend, with the highest point at 50 % of protein content, especially the collagen nanofibers, which reached 24.62 mg/g. Both protein nanofibers reached adsorption equilibrium after 15 h, but overall, collagen nanofibers showed a superior adsorption performance for Cu2+ than that by zein nanofibers. In the process of Cu2+ adsorption by protein nanofibers, both physical and chemical effect existed, and the physical effect played the leading role.
Collapse
Affiliation(s)
- Shiyu Xie
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jing Hu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ke Li
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaxin Zhao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Na Ma
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaomin Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Gaiping Guo
- College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 7648, India
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
5
|
Paluch D, Bazan-Wozniak A, Wolski R, Nosal-Wiercińska A, Pietrzak R. Removal of Methyl Red from Aqueous Solution Using Biochar Derived from Fennel Seeds. Molecules 2023; 28:7786. [PMID: 38067516 PMCID: PMC10708363 DOI: 10.3390/molecules28237786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, fennel (Foeniculum vulgare) seeds were used as a precursor to obtain carbon adsorbents through physical activation with carbon dioxide and chemical activation by impregnating the precursor with sodium carbonate. The physical activation involved the carbonization of the precursor at a temperature of 600 °C for 60 min and activation at a temperature of 800 °C for 30 min with carbon dioxide. Chemical activation included impregnation of the precursor with sodium carbonate at a mass ratio of a precursor to activator of 1:2. The mixture was activated in a nitrogen atmosphere with a flow rate at a temperature of 700 °C for 45 min. The resulting biochar samples were washed with 5% hydrochloric acid and subsequently rinsed with boiling distilled water. The biochar adsorbents were characterized using low-temperature nitrogen adsorption-desorption isotherms, Boehm titration, and pH measurements of their aqueous extracts. The specific surface area of the obtained adsorbents ranged from 89 to 345 m2/g. Biochar adsorbents exhibit a predominance of acidic groups over basic groups on their surfaces. The sorption capacities of the obtained samples towards an aqueous solution of methyl red range from 26 to 135 mg/g. Based on adsorption studies, it was found that the adsorption of the dye on the obtained biochar materials follows a pseudo-second-order model. The Freundlich isotherm best describes the studied process, indicating the formation of a multilayer of adsorbate on the adsorbent surface. The efficacy of adsorption in aqueous solutions of methyl red was found to increase with the elevation of the process temperature. Moreover, thermodynamic studies have shown that the adsorption process is spontaneous and endothermic. Consequently, this work provides a description of the physicochemical parameters of two biochars obtained by physical and chemical activation of a little-studied precursor-fennel seeds-and studies on their potential use as adsorbents for contaminants from the aqueous phase.
Collapse
Affiliation(s)
- Dorota Paluch
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.W.)
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.W.)
| | - Robert Wolski
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.W.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.W.)
| |
Collapse
|
6
|
Stejskal J, Ngwabebhoh FA, Trchová M, Prokeš J. Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2794. [PMID: 37887944 PMCID: PMC10609213 DOI: 10.3390/nano13202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm-1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1-2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials.
Collapse
Affiliation(s)
- Jaroslav Stejskal
- University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic;
| | | | - Miroslava Trchová
- Central Laboratories, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic;
| | - Jan Prokeš
- Faculty of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic;
| |
Collapse
|
7
|
Song Y, Wu Y, Wu D, Ma X, Jiang S, Peng Z, Zhang C, Yin Y, Guo R. Fluorine-tailed glass fibers for adsorption of volatile perfluorinated compounds via F-F interaction. ENVIRONMENT INTERNATIONAL 2023; 180:108205. [PMID: 37717520 DOI: 10.1016/j.envint.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Perfluorinated compounds (PFCs) and their short-chain derivatives are contaminants found globally. Adsorption research on volatile perfluorinated compounds (VPFCs), which are the main PFCs substances that undergo transfer and migration, is particularly important. In this study, new fluorine-containing tail materials (FCTMs) were prepared by combining fluorine-containing tail organic compounds with modified glass fibers. The adsorption effects of these FCTMs were generally stronger than that of pure activated glass fibers without fluorine- tailed, with an adsorption efficiency of up to 86% based on F-F interactions. The results showed that the FCTMs had improved desorption efficiency and reusability, and higher adsorption efficiency compared with that of polyurethane foam. FTGF was applied to the active sampler, and the indoor adsorption of perfluorovaleric acid was up to 2.45 ng/m3. The adsorption kinetics and isotherm simulation results showed that the adsorption process of typical perfluorinated compounds conformed to the second-order kinetics and Langmuir model. Furthermore, Nuclear Magnetic Resonance (NMR) results showed that the chemical shift in the fluorine spectrum was significantly changed by F-F interactions. This research provides basic theoretical data for the study of VPFCs, especially short-chain VPFCs, facilitating improved scientific support for the gas phase analysis of VPFCs in the environment.
Collapse
Affiliation(s)
- Yangyang Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawen Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Di Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhihao Peng
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yongguang Yin
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
8
|
Skotadis E, Aslanidis E, Tsekenis G, Panagopoulou C, Rapesi A, Tzourmana G, Kennou S, Ladas S, Zeniou A, Tsoukalas D. Hybrid Nanoparticle/DNAzyme Electrochemical Biosensor for the Detection of Divalent Heavy Metal Ions and Cr 3. SENSORS (BASEL, SWITZERLAND) 2023; 23:7818. [PMID: 37765875 PMCID: PMC10535422 DOI: 10.3390/s23187818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
A hybrid noble nanoparticle/DNAzyme electrochemical biosensor is proposed for the detection of Pb2+, Cd2+, and Cr3+. The sensor takes advantage of a well-studied material that is known for its selective interaction with heavy metal ions (i.e., DNAzymes), which is combined with metallic nanoparticles. The double-helix structure of DNAzymes is known to dissociate into smaller fragments in the presence of specific heavy metal ions; this results in a measurable change in device resistance due to the collapse of conductive inter-nanoparticle DNAzyme bridging. The paper discusses the effect of DNAzyme anchoring groups (i.e., thiol and amino functionalization groups) on device performance and reports on the successful detection of all three target ions in concentrations that are well below their maximum permitted levels in tap water. While the use of DNAzymes for the detection of lead in particular and, to some extent, cadmium has been studied extensively, this is one of the few reports on the successful detection of chromium (III) via a sensor incorporating DNAzymes. The sensor showed great potential for its future integration in autonomous and remote sensing systems due to its low power characteristics, simple and cost-effective fabrication, and easy automation and measurement.
Collapse
Affiliation(s)
- Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| | - Evangelos Aslanidis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| | - Georgios Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece;
| | - Chryssi Panagopoulou
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| | - Annita Rapesi
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| | - Georgia Tzourmana
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| | - Stella Kennou
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (S.K.); (S.L.)
| | - Spyridon Ladas
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (S.K.); (S.L.)
| | - Angelos Zeniou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (E.A.); (C.P.); (A.R.); (G.T.); (D.T.)
| |
Collapse
|
9
|
Paluch D, Bazan-Wozniak A, Nosal-Wiercińska A, Pietrzak R. Removal of Methylene Blue and Methyl Red from Aqueous Solutions Using Activated Carbons Obtained by Chemical Activation of Caraway Seed. Molecules 2023; 28:6306. [PMID: 37687135 PMCID: PMC10488674 DOI: 10.3390/molecules28176306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, activated carbons were produced through the chemical activation of caraway seeds using three different activators: Na2CO3, K2CO3, and H3PO4. A 1:2 weight ratio of precursor to activator was maintained in every instance. Comprehensive analyses were conducted on the resultant activated carbons, including elemental analysis, textural parameters determination, Boehm titration for surface oxygen functional groups, pH assessment of aqueous extracts, and quantification of ash content. The produced materials were subjected to adsorption tests for methylene blue and methyl red sodium salt from the liquid phase and the effects of adsorbent dosage, pH of the aqueous dye solution, process temperature, and adsorbent-adsorbate contact time on sorption capacity obtained. To characterize the adsorption model of the examined pollutants, both the Langmuir and Freundlich equations were employed. In addition, the sorption capacity of the obtained carbon materials against an iodine aqueous solution was assessed. The specific surface area of the obtained adsorbents ranged from 269 to 926 m2/g. By employing potassium carbonate to chemically activate the starting substance, the resulting activated carbons show the highest level of specific surface area development and the greatest sorption capacity against the tested impurities-296 mg/g for methylene blue and 208 mg/g for methyl red sodium salt. The adsorption rate for both dyes was determined to align with a pseudo-second-order kinetic model. The experimental adsorption data for methylene blue were well-described by the Langmuir model, whereas the Freundlich model was found to be congruent with the data pertaining to methyl red sodium salt.
Collapse
Affiliation(s)
- Dorota Paluch
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| |
Collapse
|
10
|
Lu H, Xie R, S Almoallim H, Alharbi SA, Jhanani GK, Praveenkumar TR, Anderson A, Xia C. Utilization of the Nannochloropsis microalgae biochar prepared via microwave assisted pyrolysis on the mixed biomass fuel pellets. ENVIRONMENTAL RESEARCH 2023; 231:116078. [PMID: 37182832 DOI: 10.1016/j.envres.2023.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Nannochloropsis microalgae biochar has become increasingly attractive due to its potential as a component of microalgae-based biodiesel blends. This biochar is a by-product of the pyrolysis process, but its use in the energy sector has been limited. In this study, pellets were formed using microalgae residues and their physiochemical properties were analyzed to assess the feasibility of using microalgae biochar as a fuel source. Three types of biomasses, namely date seed dust, coconut shell waste, and microalgae biochar, were utilized to produce fuel pellets. These pellets were categorized into three types, B1, B2, and B3, based on the composition of the biomass. The inclusion of microalgae biochar in the pellets resulted in enhanced calorific value, as well as improved heating value and bulk density. Moreover, the mechanical strength of microalgae-based pellets was higher due to their high lignin content compared to another biomass. The moisture absorption test results showed that the use of mixed biomass reduced the moisture content over an extended period. Microalgae pellets exhibited higher young's modulus and greater impact resistance, indicating greater mechanical strength. Furthermore, due to their higher calorific value, the combustion time of microalgae pellets was greater than that of other biomass. In conclusion, the results of this study suggest that microalgae biochar can be a promising alternative fuel source for the energy sector.
Collapse
Affiliation(s)
- Haiying Lu
- College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ruiyan Xie
- College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - T R Praveenkumar
- Department of Construction Technology and Management, College of Engineering and Technology, Wollega University, Ethiopia.
| | - A Anderson
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
11
|
Tursi A, Beneduci A, Nicotera I, Simari C. MWCNTs Decorated with TiO 2 as Highly Performing Filler in the Preparation of Nanocomposite Membranes for Scalable Photocatalytic Degradation of Bisphenol A in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2325. [PMID: 37630910 PMCID: PMC10458988 DOI: 10.3390/nano13162325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting compound with estrogenic behavior, is of great concern within the scientific community due to its high production levels and increasing concentration in various surface aquifers. While several materials exhibit excellent capacity for the photocatalytic degradation of BPA, their powdered nature and poor chemical stability render them unsuitable for practical application in large-scale water decontamination. In this study, a new class of nanocomposite membranes based on sulfonated polyethersulfone (sPES) and multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNTs-TiO2) were investigated as efficient and scalable photocatalysts for the photodegradation of BPA in aqueous solutions. The MWCNTs-TiO2 hybrid material was prepared through a facile and inexpensive hydrothermal method and extensively characterized by XRD, Raman, FTIR, BET, and TGA. Meanwhile, nanocomposite membranes at different filler loadings were prepared by a simple casting procedure. Swelling tests and PFG NMR analyses provided insights into the impact of filler introduction on membrane hydrophilicity and water molecular dynamics, whereas the effectiveness of the various photocatalysts in BPA removal was monitored using HPLC. Among the different MWCNTs-TiO2 content nanocomposites, the one at 10 wt% loading (sP-MT10) showed the best photoactivity. Under UV irradiation at 254 nm and 365 nm for 240 min, photocatalytic oxidation of 5 mg/L bisphenol A by sP-MT10 resulted in 91% and 82% degradation, respectively. Both the effect of BPA concentration and the membrane regenerability were evaluated, revealing that the sP-MT10 maintained its maximum BPA removal capability over more than 10 cycles. Our findings indicate that sP-MT nanocomposite membranes are versatile, scalable, efficient, and highly reusable photocatalysts for the degradation of BPA, as well as potentially for other endocrine disruptors.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- SIRiA S.r.l.-Servizi Integrati e Ricerche per l’Ambiente, c/o Department of Chemistry and Chemical Technologies, Spin-Off of the University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy
| | - Isabella Nicotera
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
12
|
Farias KCS, Guimarães RCA, Oliveira KRW, Nazário CED, Ferencz JAP, Wender H. Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater. TOXICS 2023; 11:664. [PMID: 37624169 PMCID: PMC10459949 DOI: 10.3390/toxics11080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Disposing of pollutants in water sources poses risks to human health and the environment, but biosorption has emerged as an eco-friendly, cost-effective, and green alternative for wastewater treatment. This work shows the ability of banana peel powder (BPP) biosorbents for efficient sorption of methylene blue (MB), atrazine, and glyphosate pollutants. The biosorbent highlights several surface chemical functional groups and morphologies containing agglomerated microsized particles and microporous structures. BPP showed a 66% elimination of MB in 60 min, with an adsorption capacity (qe) of ~33 mg g-1, and a combination of film diffusion and chemisorption governed the sorption process. The biosorbent removed 91% and 97% of atrazine and glyphosate pesticides after 120 min, with qe of 3.26 and 3.02 mg g-1, respectively. The glyphosate and atrazine uptake best followed the Elovich and the pseudo-first-order kinetic, respectively, revealing different sorption mechanisms. Our results suggest that BPP is a low-cost biomaterial for green and environmentally friendly wastewater treatment.
Collapse
Affiliation(s)
- Kelly C. S. Farias
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Rita C. A. Guimarães
- Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Karla R. W. Oliveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Carlos E. D. Nazário
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Julio A. P. Ferencz
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Faculty of Engineering, Architecture, Urbanism, and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
13
|
Hendrix Y, Rauwel E, Nagpal K, Haddad R, Estephan E, Boissière C, Rauwel P. Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1998. [PMID: 37446514 DOI: 10.3390/nano13131998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal in outdoor conditions. The effect of ZnO defect states, i.e., the presence of zinc and oxygen defects on the photocatalytic activity was probed for two types of dyes: fuchsin and methylene blue. Three morphologies of ZnO nanoparticles were deliberately selected, i.e., spherical, facetted and a mix of spherical and facetted, ascertained via transmission electron microscopy. Aqueous and non-aqueous sol-gel routes were applied to their synthesis in order to tailor their size, morphology and defect states. Raman spectroscopy demonstrated that the spherical nanoparticles contained a high amount of oxygen vacancies and zinc interstitials. Photoluminescence spectroscopy revealed that the facetted nanoparticles harbored zinc vacancies in addition to oxygen vacancies. A mechanism for dye degradation based on the possible surface defects in facetted nanoparticles is proposed in this work. The reusability of these nanoparticles for five cycles of dye degradation was also analyzed. More specifically, facetted ZnO nanoparticles tend to exhibit higher efficiencies and reusability than spherical nanoparticles.
Collapse
Affiliation(s)
- Yuri Hendrix
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Erwan Rauwel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Keshav Nagpal
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Ryma Haddad
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Elias Estephan
- Laboratoire Bioinginirie et Nanoscience (LBN), University of Montpellier, 34193 Montpellier, France
| | - Cédric Boissière
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Protima Rauwel
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| |
Collapse
|
14
|
Singh HM, Sharma M, Tyagi VV, Goria K, Buddhi D, Sharma A, Bruno F, Sheoran S, Kothari R. Potential of biogenic and non-biogenic waste materials as flocculant for algal biomass harvesting: Mechanism, parameters, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117591. [PMID: 36996549 DOI: 10.1016/j.jenvman.2023.117591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
In this review article, waste materials (biogenic/non-biogenic) are focused as the flocculants for harvesting of algal biomass. Chemical flocculants are widely utilized for the effective harvesting of algal biomass at a commercial scale while the high cost is a major drawback. The waste materials-based flocculants (WMBF) are started to utilize as one of the cost-effective performance for dual benefits of waste minimization and reuse for sustainable recovery of biomass. The novelty of the article is articulated with the objective that presents an insight of WMBF, classification of WMBF, preparation methods of WMBF, mechanisms of flocculation, factors affecting flocculation-mechanism, challenges and future recommendations that are required for harvesting of algae. The WMBF are shown similar flocculation mechanisms and flocculation efficiencies as chemical flocculants. Thus, the utilization of waste material for the flocculation process of algal cells minimizes the waste load into the environment and transforms the waste materials into valuable resources.
Collapse
Affiliation(s)
- Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - Mriduta Sharma
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| | - Kajol Goria
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India
| | - D Buddhi
- Uttaranchal Institute of Technology, Uttaranchal University, Uttarakhand, 248007, Dehradun, India
| | - Atul Sharma
- Non-Conventional Energy Laboratory, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, UP, India
| | - Frank Bruno
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Shane Sheoran
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India.
| |
Collapse
|
15
|
Saad Binkadem M. Fabrication of PCL/CMARX/GO Composite Nanofibrous Mats for Dye Adsorption: Wastewater Treatment. MEMBRANES 2023; 13:622. [PMID: 37504988 PMCID: PMC10383201 DOI: 10.3390/membranes13070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The effluents of industrial wastewater contain several toxic organic and inorganic pollutants that may contaminate clean and freshwater sources if untreated or poorly treated. These toxic pollutants include colors; hazardous compounds; surfactants; cosmetics; agrochemicals; pharmaceutical by-products; and agricultural, pharmaceutical, and medical contaminants. Treating wastewater has become a global problem. Many projects have been started in the last two decades to treat wastewater, resultant water pollution, and associated waste management problems. Adsorbants based on graphene oxide (GO) are viable wastewater treatment materials due to their adaptability, photocatalytic action, and capacity for self-assembly. Here, we report the fabrication of nanofibrous mats from polycaprolactone (PCL), carboxymethyl arabinoxylan (CMARX), and carboxyl-functionalized-graphene oxide using an electrospinning technique. The silver nanoparticles were loaded onto the mat to enhance their photocatalytic activity. These mats were characterized using different techniques, including Fourier transform infrared (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). The water contact angles were used to study their hydrophilic and hydrophobic behavior. The Langmuir isotherm model and adsorption kinetics were studied to evaluate their adsorption capabilities against methylene blue (MB). Sample 2 followed the Langmuir isotherm model (R2 = 0.9939). Adsorption kinetics exhibited pseudo-second order behavior (R2 = 0.9978) due to their maximum correlation coefficient values. MB has excellent adsorption at room temperature and the formation of the monolayer at the surface of the adsorption mat. An enhanced PO43- and MB adsorption was observed, providing recyclability up to 4-5 times. Hence, the fabricated nanofibrous mat would be a potential candidate for more effective wastewater treatment applications.
Collapse
Affiliation(s)
- Mona Saad Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Li X, Jin X, Wu Y, Zhang D, Sun F, Ma H, Pugazhendhi A, Xia C. A comprehensive review of lignocellulosic biomass derived materials for water/oil separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162549. [PMID: 36871707 DOI: 10.1016/j.scitotenv.2023.162549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
With rapid socioeconomic development, oil is widely used in all aspects of modern society. However, the extraction, transport, and processing of oil inevitably lead to the production of large quantities of oily wastewater. Traditional oil/water separation strategies are often inefficient, costly, and cumbersome to operate. Therefore, new green, low-cost, and high-efficiency materials must be developed for oil/water separation. As widely sourced and renewable natural biocomposites, wood-based materials have become a hot field recently. This review will focus on the application of several wood-based materials in oil/water separation. The state of research on wood sponges, cotton fibers, cellulose aerogels, cellulose membranes, and some other wood-based materials for oil/water separation over the last few years and provide an outlook on their future development are summarized and investigated. It is expected to provide some direction for future research on the use of wood-based materials in oil/water separation.
Collapse
Affiliation(s)
- Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
17
|
Hussain M, Hussaini SS, Shariq M, Alzahrani H, Alholaisi AA, Alharbi SH, Alsharif SA, Al-Gethami W, Ali SK, Alaghaz ANMA, Siddiqui MA, Seku K. Enhancing Cu 2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent. Molecules 2023; 28:4494. [PMID: 37298968 PMCID: PMC10254508 DOI: 10.3390/molecules28114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.
Collapse
Affiliation(s)
- Mushtaq Hussain
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Syed Sulaiman Hussaini
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Hanan Alzahrani
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Arafa A. Alholaisi
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samar H. Alharbi
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Sirajah A. Alsharif
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Mohd Asim Siddiqui
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Kondaiah Seku
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| |
Collapse
|
18
|
Wei F, Wang K, Li W, Ren Q, Qin L, Yu M, Liang Z, Nie M, Wang S. Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules 2023; 28:molecules28114411. [PMID: 37298886 DOI: 10.3390/molecules28114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
This work studies the use of Fe/Ni-MOFs for the removal of ciprofloxacin (CIP) in wastewater. Fe/Ni-MOFs are prepared by the solvothermal method and characterized by X-ray diffraction (XRD), a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and a thermal gravimetric analyzer (TG). Under the conditions of the concentration of 50 ppm, a mass of 30 mg, and a temperature of 30 °C, the maximum adsorption capacity of ciprofloxacin removal within 5 h was 232.1 mg/g. The maximum removal rate was 94.8% when 40 mg of the Fe/Ni-MOFs was added to the solution of 10 ppm ciprofloxacin. According to the pseudo-second-order (PSO) kinetic model, the R2 values were all greater than 0.99, which proved that the adsorption theory of ciprofloxacin by Fe/Ni-MOFs was consistent with the practice. The adsorption results were mainly affected by solution pH and static electricity, as well as other factors. The Freundlich isotherm model characterized the adsorption of ciprofloxacin by Fe/Ni-MOFs as multilayer adsorption. The above results indicated that Fe/Ni-MOFs were effective in the practical application of ciprofloxacin removal.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Kui Wang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Wenxiu Li
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Lan Qin
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Mengjie Yu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Meng Nie
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Siyuan Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Zhao Y, Hussain A, Liu Y, Yang Z, Zhao T, Bamanu B, Su D. Electrospinning micro-nanofibers immobilized aerobic denitrifying bacteria for efficient nitrogen removal in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118230. [PMID: 37247550 DOI: 10.1016/j.jenvman.2023.118230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Electrospinning micro-nanofibers with exceptional physicochemical properties and biocompatibility are becoming popular in the medical field. These features indicate its potential application as microbial immobilized carriers in wastewater treatment. Here, aerobic denitrifying bacteria were immobilized on micro-nanofibers, which were prepared using different concentrations of polyacrylonitrile (PAN) solution (8%, 12% and 15%). The results of diameter distribution, specific surface area and average pore diameter indicated that 15% PAN micro-nanofibers with tighter surface structure were not suitable as microbial carriers. The bacterial load results showed that the cell density (OD600) and total protein of 12% PAN micro-nanofibers were 107.14% and 106.28% higher than those of 8% PAN micro-nanofibers. Subsequently, the 12% PAN micro-nanofibers were selected for aerobic denitrification under the different C/N ratios (1.5-10), and stable performance was obtained. Bacterial community analysis further manifested that the micro-nanofibers effectively immobilized bacteria and enriched bacterial structure under the high C/N ratios. Therefore, the feasibility of micro-nanofibers as microbial carriers was confirmed. This work was of great significance for promoting the application of electrospinning for microbial immobilization in wastewater treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhengwu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong Su
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Pirvu F, Covaliu-Mierlă CI, Catrina GA. Removal of Acetaminophen Drug from Wastewater by Fe 3O 4 and ZSM-5 Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111745. [PMID: 37299648 DOI: 10.3390/nano13111745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Adsorption of toxic compounds from water using zeolites and magnetite was developed due to the various advantages of their applicability. In the last twenty years, the use of zeolite-based compositions in the form of zeolite/inorganic or zeolite/polymer and magnetite has been accelerated for the adsorption of emergent compounds from water sources. The main adsorption mechanisms using zeolite and magnetite nanomaterials are high surface adsorption, ion exchange capacity and electrostatic interaction. This paper shows the capacity of Fe3O4 and ZSM-5 nanomaterials of adsorbing the emerging pollutant acetaminophen (paracetamol) during the treatment of wastewater. The efficiencies of the Fe3O4 and ZSM-5 in the wastewater process were systematically investigated using adsorption kinetics. During the study, the concentration of acetaminophen in the wastewater was varied from 50 to 280 mg/L, and the maximum Fe3O4 adsorption capacity increased from 25.3 to 68.9 mg/g. The adsorption capacity of each studied material was performed for three pH values (4, 6, 8) of the wastewater. Langmuir and Freundlich isotherm models were used to characterize acetaminophen adsorption on Fe3O4 and ZSM-5 materials. The highest efficiencies in the treatment of wastewater were obtained at a pH value of 6. Fe3O4 nanomaterial presented a higher removal efficiency (84.6%) compared to ZSM-5 nanomaterial (75.4%). The results of the experiments show that both materials have a potential to be used as an effective adsorbents for the removal of acetaminophen from wastewater.
Collapse
Affiliation(s)
- Florinela Pirvu
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- National Research and Development Institute for Industrial Ecology ECOIND, 71-73, Drumul Podu Dambovitei Street, 060652 Bucharest, Romania
| | - Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Gina Alina Catrina
- National Research and Development Institute for Industrial Ecology ECOIND, 71-73, Drumul Podu Dambovitei Street, 060652 Bucharest, Romania
| |
Collapse
|
21
|
Ramos-Guivar JA, Checca-Huaman NR, Litterst FJ, Passamani EC. Surface Adsorption Mechanism between Lead(II,IV) and Nanomaghemite Studied on Polluted Water Samples Collected from the Peruvian Rivers Mantaro and Cumbaza. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101684. [PMID: 37242100 DOI: 10.3390/nano13101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Real water remediation is an important issue that requires the development of novel adsorbents with remarkable adsorption properties, permitting reusability. In this work, the surface and adsorption properties of bare magnetic iron oxide nanoparticles were systematically studied, before and after the application of a maghemite nanoadsorbent in two real Peruvian effluents severely contaminated with Pb(II), Pb(IV), Fe(III), and others. We were able to describe the Fe and Pb adsorption mechanisms that occurred at the particle surface. 57Fe Mössbauer and X-ray photoelectron spectroscopy results together with kinetic adsorption analyses gave evidence for two involved surface mechanisms: (i) surface deprotonation of maghemite nanoparticles (isoelectric point of pH = 2.3), forming Lewis sites bonding Pb complexes; and (ii) the formation of a thin inhomogeneous secondary layer of iron oxyhydroxide and adsorbed Pb compounds, as favored by surface physicochemical conditions. The magnetic nanoadsorbent enhanced the removal efficiency to values of ca. 96% and provided adsorptive properties with reusability due to the conserved morphological, structural, and magnetic properties. This makes it favorable for large-scale industrial applications.
Collapse
Affiliation(s)
- Juan A Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada Para la Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Peru
| | | | - F Jochen Litterst
- Institut fur Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Edson C Passamani
- Departamento de Física, Universidade Federal do Espírito Santo -UFES, Vitória 29075-910, ES, Brazil
| |
Collapse
|
22
|
Barbera M, Indelicato S, Bongiorno D, Censi V, Saiano F, Piazzese D. Untreated Opuntia ficus indica for the Efficient Adsorption of Ni(II), Pb(II), Cu(II) and Cd(II) Ions from Water. Molecules 2023; 28:molecules28093953. [PMID: 37175363 PMCID: PMC10179860 DOI: 10.3390/molecules28093953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The raw cladode of Opuntia ficus indica (OFI) was evaluated as a sustainable biosorbent for the removal of heavy metals (Ni, Pb, Cu, and Cd) from aqueous solutions. The functional groups of OFI were identified by employing DRIFT-FTIR and CP-MAS-NMR techniques before and after contact with the ions in an aqueous media, showing a rearrangement of the biomass structure due to the complexation between the metal and the functional groups. The adsorption process was studied in both single- and multi-component systems under batch conditions at different pHs (4.0, 5.0, and 6.0), different metal concentrations, and different biomass amounts. The results show that the raw OFI had a removal capacity at room temperature of over 80% for all metals studied after only 30 min of contact time, indicating a rapid adsorption process. Biosorption kinetics were successfully fitted by the pseudo-second-order equation, while Freundlich correctly modelled the biosorption data at equilibrium. The results of this work highlight the potential use of the untreated cladode of OFI as an economical and environmentally friendly biosorbent for the removal of heavy metals from the contaminated aqueous solution.
Collapse
Affiliation(s)
- Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Filippo Saiano
- Department of Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
23
|
Abid M, Ben Haj Amara A, Bechelany M. Halloysite-TiO 2 Nanocomposites for Water Treatment: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091578. [PMID: 37177123 PMCID: PMC10181021 DOI: 10.3390/nano13091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Halloysite nanotubes (HNTs) are clay minerals with a tubular structure that can be used for many different applications in place of carbon nanotubes. Indeed, HNTs display low/non-toxicity, are biocompatible, and can be easily prepared. Moreover, the aluminum and silica groups present on HNTs' inner and outer surfaces facilitate the interaction with various functional agents, such as alkalis, organosilanes, polymers, surfactants, and nanomaterials. This allows the deposition of different materials, for instance, metal and non-metal oxides, on different substrate types. This review article first briefly presents HNTs' general structure and the various applications described in the last 20 years (e.g., drug delivery, medical implants, and energy storage). Then, it discusses in detail HNT applications for water purification (inorganic and organic pollutants). It focuses particularly on HNT-TiO2 composites that are considered very promising photocatalysts due to their high specific surface area and adsorption capacity, large pore volume, good stability, and mechanical features.
Collapse
Affiliation(s)
- Mahmoud Abid
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Laboratory of Resources, Materials & Ecosystem (RME), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Abdesslem Ben Haj Amara
- Laboratory of Resources, Materials & Ecosystem (RME), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Gulf University for Science and Technology, GUST, West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
24
|
ALSamman MT, Sánchez J. Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers (Basel) 2023; 15:2192. [PMID: 37177337 PMCID: PMC10180717 DOI: 10.3390/polym15092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
New biobased hydrogels were prepared via a semi-interpenetrating polymer network (semi-IPN) using polyacrylamide/chitosan (PAAM/chitosan) hydrogel for the adsorption of As(V) or poly acrylic acid/alginate (PAA/alginate) hydrogel for the adsorption of Cu(II). Both systems were crosslinked using N,N'-methylenebisacrylamide as the crosslinker and ammonium persulfate as the initiating agent. The hydrogels were characterized by SEM, Z-potential, and FTIR. Their performance was studied under different variables, such as the biopolymer effect, adsorbent dose, pH, contact time, and concentration of metal ions. The characterization of hydrogels revealed the morphology of the material, with and without biopolymers. In both cases, the added biopolymer provided porosity and cavities' formation, which improved the removal capacity. The Z-potential informed the surface charge of hydrogels, and the addition of biopolymers modified it, which explains the further metal removal ability. The FTIR spectra showed the functional groups of the hydrogels, confirming its chemical structure. In addition, the adsorption results showed that PAAM/chitosan can efficiently remove arsenic, reaching a capacity of 17.8 mg/g at pH 5.0, and it can also be regenerated by HNO3 for six cycles. On the other hand, copper-ion absorption was studied on PAA/alginate, which can remove with an adsorption capacity of 63.59 mg/g at pH 4.0, and the results indicate that it can also be regenerated by HNO3 for five cycles.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
25
|
Almuslem AS, Alnaim N, Ibrahim SS, Ibrahim MA. Green Synthesis and Characteristics of Cellulose Nanocrystal/Poly Acrylic Acid Nanocomposite Thin Film for Organic Dye Adsorption during Water Treatment. Polymers (Basel) 2023; 15:polym15092154. [PMID: 37177300 PMCID: PMC10180910 DOI: 10.3390/polym15092154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Nanocellulose shows potential as an effective natural adsorbent for removing harmful contaminants from wastewater. This paper describes the development of innovative nanocellulose thin films made of cellulose nanocrystals (CNCs), polyacrylic acid (PAA), and active carbon (AC) as adsorbent materials for absorbing azo dyes from wastewater. The CNCs were recovered from sugarcane bagasse using alkali treatment and acid hydrolysis. The composition and processing parameters of the thin films were optimized, and their adsorption capacity was determined using thermodynamic isotherms and adsorption kinetics. Adsorption characteristics such as the methylene blue (MB) dye concentration, contact time, temperature, and pH were investigated to determine how they affected adsorption. The results show that the adsorption process follows pseudo-second-order kinetics. At an adsorbent mass of 50 mg, dye concentration of 50 ppm in 50 mL, and contact period of 120 min at 25 °C, the thin film comprising 64 wt% CNC, 16 wt% PAA, and 20 wt% AC showed high dye removal efficiency (86.3%) and adsorption capacity (43.15 mg/g). The MB removal efficiency increased to 95.56% and the adsorption capacity to 47.78 mg/g when the medium's pH was gradually increased from neutral to alkaline. The nontoxicity, low production cost, water stability, easy recovery, and high adsorption capacity of these membranes make them suitable for water treatment systems.
Collapse
Affiliation(s)
- Amani Saleh Almuslem
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Nisrin Alnaim
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Sobhy S Ibrahim
- Physics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa A Ibrahim
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Production and R&D Unit, NanoFab Technology Company, 6th October City, Giza 11795, Egypt
| |
Collapse
|
26
|
Bin Bandar K, Aljlil S. Utilization of Prepared Nanocellulose as a Biopolymer for Adsorption Kinetics of Cobalt Ions from Wastewater. Polymers (Basel) 2023; 15:polym15092143. [PMID: 37177290 PMCID: PMC10180900 DOI: 10.3390/polym15092143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This study evaluated nanocellulose derived from discarded palm leaves for its ability to remove cobalt ions from industrial wastewater. The process involved extracting cellulose nanocrystals (CNCs) from date palm leaves through a series of repeated chemical treatments. The study examined the adsorption rates of cobalt ions under various conditions using different techniques. Two equilibrium models, the Langmuir and Freundlich models, were employed, and the Langmuir model was found to be consistent with the experimental data. The maximum amount of cobalt ions adsorbed at room temperature was 5.98 mg/g. Furthermore, several kinetic models were used to gain insight into the adsorption mechanism, including the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The pseudo-second-order model provided an accurate description of the adsorption process, while the Elovich equation suggested a chemical reaction between cobalt ions and nanocellulose, involving multiple chemical reactions and mass-transfer processes. Kinetic parameters were critical in interpreting the results, and the study's findings were in agreement with the pseudo-second-order and intraparticle models, indicating general chemical reactions and diffusion resistance.
Collapse
Affiliation(s)
- Khaled Bin Bandar
- Water Management and Treatment Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Saad Aljlil
- Water Management and Treatment Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| |
Collapse
|
27
|
Al-Odayni AB, Alsubaie FS, Abdu NAY, Al-Kahtani HM, Saeed WS. Adsorption Kinetics of Methyl Orange from Model Polluted Water onto N-Doped Activated Carbons Prepared from N-Containing Polymers. Polymers (Basel) 2023; 15:polym15091983. [PMID: 37177131 PMCID: PMC10180562 DOI: 10.3390/polym15091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents were characterized using FTIR, SEM, TGA, elemental analysis, and surface area. The kinetic experiments were performed in batches at different MO concentrations (C0) and adsorbent dosages. The adsorption kinetic profiles of pseudo-first-order, pseudo-second-order (PSO), Elovich, intraparticle diffusion, and liquid film diffusion models were compared. The results showed a better fit to the PSO model, suggesting a chemisorption process. The adsorption capacity (qe, mg/g) was found to have increased as MO C0 increased, yet decreased as the adsorbent quantity increased. At the adsorption operating condition, including MO C0 (200 ppm) and adsorbent dose (40 mg), the calculated qe values were in the order of PAnAC (405 mg/g) > PPyAC (204 mg/g) > PnyAC (182 mg/g). This trend proved the carbon precursor's importance in the final properties of the intended carbons; elemental analysis confirmed that the more nitrogen atoms are in the activated carbon, the greater the number of active sites in the adsorbent for accommodating adsorbates. The diffusion mechanism also assumed a rate-limiting step controlled by the film and intraparticle diffusion. Therefore, such an efficient performance may support the target route's usefulness in converting nitrogenous-species waste into valuable materials.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Faisal S Alsubaie
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A Y Abdu
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
28
|
Silva PAP, Oréfice RL. Bio-sorbent from castor oil polyurethane foam containing cellulose-halloysite nanocomposite for removal of manganese, nickel and cobalt ions from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131433. [PMID: 37146336 DOI: 10.1016/j.jhazmat.2023.131433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
In order to mitigate the contamination of water with heavy metals, caused by mining dam failures in Brumadinho and Mariana in Brazil, eco-friendly bio-based castor oil polyurethane foams, containing a cellulose-halloysite green nanocomposite were prepared. Polyurethane foams containing none (PUF-0), 5%wt (PUF-5), and 10%wt (PUF-10) of the nanocomposite were obtained. The application of the material in aqueous media was verified through an investigation of the efficiency of adsorption, the adsorption capacity, and the adsorption kinetics in pH= 2 and pH= 6.5 for manganese, nickel, and cobalt ions. An increase of 5.47 times in manganese adsorption capacity was found after only 30 min in contact with a solution having this ion at pH= 6.5 for PUF-5 and 11.38 times for PUF-10 when both were compared with PUF-0. Adsorption efficiency was respectively 68.17% at pH= 2 for PUF-5% and 100% for PUF-10 after 120 h, while for the control foam, PUF-0, the adsorption efficiency was only 6.90%.
Collapse
Affiliation(s)
- Philipe Augusto Pocidonio Silva
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
29
|
Song J, Yang W, Han X, Jiang S, Zhang C, Pan W, Jian S, Hu J. Performance of Rod-Shaped Ce Metal-Organic Frameworks for Defluoridation. Molecules 2023; 28:molecules28083492. [PMID: 37110726 PMCID: PMC10143828 DOI: 10.3390/molecules28083492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The performance of a Ce(III)-4,4',4″-((1,3,5-triazine-2,4,6-triyl) tris (azanediyl)) tribenzoic acid-organic framework (Ce-H3TATAB-MOFs) for capturing excess fluoride in aqueous solutions and its subsequent defluoridation was investigated in depth. The optimal sorption capacity was obtained with a metal/organic ligand molar ratio of 1:1. The morphological characteristics, crystalline shape, functional groups, and pore structure of the material were analyzed via SEM, XRD, FTIR, XPS, and N2 adsorption-desorption experiments, and the thermodynamics, kinetics, and adsorption mechanism were elucidated. The influence of pH and co-existing ions for defluoridation performance were also sought. The results show that Ce-H3TATAB-MOFs is a mesoporous material with good crystallinity, and that quasi-second kinetic and Langmuir models can describe the sorption kinetics and thermodynamics well, demonstrating that the entire sorption process is a monolayer-governed chemisorption. The Langmuir maximum sorption capacity was 129.7 mg g-1 at 318 K (pH = 4). The adsorption mechanism involves ligand exchange, electrostatic interaction, and surface complexation. The best removal effect was reached at pH 4, and a removal effectiveness of 76.57% was obtained under strongly alkaline conditions (pH 10), indicating that the adsorbent has a wide range of applications. Ionic interference experiments showed that the presence of PO43- and H2PO4- in water have an inhibitory effect on defluoridation, whereas SO42-, Cl-, CO32-, and NO3- are conducive to the adsorption of fluoride due to the ionic effect.
Collapse
Affiliation(s)
- Jiangyan Song
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Xiaoshuai Han
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
| | - Shaoju Jian
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Jiapeng Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
30
|
Syed N, Feng Y, Fahad R, Huang J, Mahar FK. Carbon‐based composite nanofibers for photocatalytic degradation of methylene blue dye under visible light. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Noureen Syed
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| | - Yongqiang Feng
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Raja Fahad
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| | - Jianfeng Huang
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Faraz Khan Mahar
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| |
Collapse
|
31
|
Wei Z, Hou C, Gao Z, Wang L, Yang C, Li Y, Liu K, Sun Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO 3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023; 28:molecules28073188. [PMID: 37049949 PMCID: PMC10096365 DOI: 10.3390/molecules28073188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The effective removal of oxytetracycline hydrochloride (OTC) from the water environment is of great importance. Adsorption as a simple, stable, and cost-effective technology is regarded as an important method for removing OTC. Herein, a low-cost biochar with a developed mesoporous structure was synthesized via pyrolysis of poplar leaf with potassium bicarbonate (KHCO3) as the activator. KHCO3 can endow biochar with abundant mesopores, but excessive KHCO3 cannot continuously promote the formation of mesoporous structures. In comparison with all of the prepared biochars, PKC-4 (biochar with a poplar leaf to KHCO3 mass ratio of 5:4) shows the highest adsorption performance for OTC as it has the largest surface area and richest mesoporous structure. The pseudo-second-order kinetic model and the Freundlich equilibrium model are more consistent with the experimental data, which implies that the adsorption process is multi-mechanism and multi-layered. In addition, the maximum adsorption capacities of biochar are slightly affected by pH changes, different metal ions, and different water matrices. Moreover, the biochar can be regenerated by pyrolysis, and its adsorption capacity only decreases by approximately 6% after four cycles. The adsorption of biochar for OTC is mainly controlled by pore filling, though electrostatic interactions, hydrogen bonding, and π-π interaction are also involved. This study realizes biomass waste recycling and highlights the potential of poplar leaf-based biochar for the adsorption of antibiotics.
Collapse
Affiliation(s)
- Zhenhua Wei
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chao Hou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhishuo Gao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luolin Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chuansheng Yang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yudong Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yongbin Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
32
|
Li Z, Zheng Z, Li H, Xu D, Li X, Xiang L, Tu S. Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1524. [PMID: 37050150 PMCID: PMC10096505 DOI: 10.3390/plants12071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Rice husk biochar (RHB) is a low-cost and renewable resource that has been found to be highly effective for the remediation of water and soil environments. Its yield, structure, composition, and physicochemical properties can be modified by changing the parameters of the preparation process, such as the heating rate, pyrolysis temperature, and carrier gas flow rate. Additionally, its specific surface area and functional groups can be modified through physical, chemical, and biological means. Compared to biochar from other feedstocks, RHB performs poorly in solutions with coexisting metal, but can be modified for improved adsorption. In contaminated soils, RHB has been found to be effective in adsorbing heavy metals and organic matter, as well as reducing pollutant availability and enhancing crop growth by regulating soil properties and releasing beneficial elements. However, its effectiveness in complex environments remains uncertain, and further research is needed to fully understand its mechanisms and effectiveness in environmental remediation.
Collapse
Affiliation(s)
- Zheyong Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Zhiwei Zheng
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Xing Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Research Centre for Environment Pollution and Remediation, Wuhan 430070, China
| |
Collapse
|
33
|
Drużyński S, Mazurek K, Kiełkowska U, Wróbel-Kaszanek A, Igliński B. Physicochemical Properties and Application of Silica-Doped Biochar Composites as Efficient Sorbents of Copper from Tap Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2794. [PMID: 37049088 PMCID: PMC10096430 DOI: 10.3390/ma16072794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
This article concerns research on new sorption materials based on silica-doped activated carbon. A two-stage synthesis involved pyrolysis of plant material impregnated in a water glass solution, followed by hydrothermal activation of the pyrolysate in KOH solution. The resulting composite can be used as a sorbent in drinking water filters. The proposed method of synthesis enables the design of materials with a surface area of approximately 150 m2·g-1, whose chemical composition and structure were confirmed by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA) and Fourier-transform infrared spectroscopy (FTIR). The sorption properties of the obtained materials were determined relative to copper ions using the batch experiment method. The optimal operating parameters of the obtained materials relative to copper ions are T = 313.15 K, pH = 5, S:L ratio = 4 g·dm-3 and t = 120 min. The research shows that the sorption kinetics of copper ions can be described by a pseudo-second-order model. The plotted copper(II) sorption isotherm clearly indicates the Langmuir model. Under optimal conditions, the maximum sorption of copper ions was 37.74 mg·g-1, which is a satisfactory result and confirms the possibility of using the obtained material in drinking water filters.
Collapse
|
34
|
Huang R, Xu Y, Kuznetsov BN, Sun M, Zhou X, Luo J, Jiang K. Enhanced hybrid hydrogel based on wheat husk lignin-rich nanocellulose for effective dye removal. Front Bioeng Biotechnol 2023; 11:1160698. [PMID: 37008025 PMCID: PMC10050590 DOI: 10.3389/fbioe.2023.1160698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels were enhanced mechanically through the addition of lignin-rich nanocellulose (LCN), soluble ash (SA) and montmorillonite (MMT) for dye removal. The hybrid hydrogels reinforced with 33.3 wt% of LCN had a 163.0% increase in storage modulus as compared to the PVA/0LCN-33.3SM hydrogel. LCN can be added to the PVA hydrogel to alter its rheological properties. Additionally, hybrid hydrogels were highly efficient in removing methylene blue from wastewater, which was attributed to the synergistic effects of the PVA matrix supporting embedded LCN, MMT, and SA. The adsorption time (0–90 min) showed that the hydrogels containing MMT and SA had high removal efficiency, and the adsorption of methylene blue (MB) by PVA/20LCN-13.3SM was greater than 95.7% at 30°C. It was found that MB efficiency decreased with a high MMT and SA content. Our study provided a new method for the fabrication of polymers-based eco-friendly, low-cost and robust physical hydrogels for the MB removal.
Collapse
Affiliation(s)
- Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Boris N. Kuznetsov
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Siberian Federal University, Krasnoyarsk, Russia
| | - Meitao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jing Luo, ; Kankan Jiang,
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jing Luo, ; Kankan Jiang,
| |
Collapse
|
35
|
Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light. SEPARATIONS 2023. [DOI: 10.3390/separations10030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Wastewater treatment is indispensable as wastewater can lead to adverse health effects and deteriorate the quality of life on earth. Photocatalysis is a facile methodology to address this issue. In this study, nanocomposites (NCs) of manganese oxide (Mn3O4) and nickel oxide (NiO) were synthesized in different weight ratios via the solid-state reaction route. Structural properties, optical properties, surface morphology, and functional group analysis of the synthesized nanomaterials were conducted using X-ray diffraction (XRD), UV– Vis spectroscopy, scanning electron microscopy (SEM) along with energy-dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FTIR) spectroscopy, respectively. The bandgap of the nanocomposite decreases significantly from 2.35 eV for the Mn3O4 NPs to 1.65 eV for the Mn3O4/NiO nanocomposite (NC). Moreover, adsorption studies followed by the photocatalytic performance of the Mn3O4/NiO NCs were evaluated to determine the removal of methylene blue (MB) dye from wastewater. The photocatalytic performance of the nanocomposite enhances as the ratio of Mn3O4 in the composite increases from one weight percentage to three weight percentage. The photocatalytic degradation efficiency was calculated to be 95%. The results show that the synthesized NCs could play an important role in photocatalytic wastewater purification and environmental remediation.
Collapse
|
36
|
Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers (Basel) 2023; 15:polym15061341. [PMID: 36987122 PMCID: PMC10052156 DOI: 10.3390/polym15061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal–organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.
Collapse
|
37
|
Bruno MM, Cotella NG, Barbero CA. Hierarchical Biobased Macroporous/Mesoporous Carbon: Fabrication, Characterization and Electrochemical/Ion Exchange Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2101. [PMID: 36903216 PMCID: PMC10004673 DOI: 10.3390/ma16052101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the goal of improving the mechanical properties of porous hierarchical carbon, cellulosic fiber fabric was incorporated into the resorcinol/formaldehyde (RF) precursor resins. The composites were carbonized in an inert atmosphere, and the carbonization process was monitored by TGA/MS. The mechanical properties, evaluated by nanoindentation, show an increase in the elastic modulus due to the reinforcing effect of the carbonized fiber fabric. It was found that the adsorption of the RF resin precursor onto the fabric stabilizes its porosity (micro and mesopores) during drying while incorporating macropores. The textural properties are evaluated by N2 adsorption isotherm, which shows a surface area (BET) of 558 m2g-1. The electrochemical properties of the porous carbon are evaluated by cyclic voltammetry (CV), chronocoulometry (CC), and electrochemical impedance spectroscopy (EIS). Specific capacitances (in 1 M H2SO4) of up to 182 Fg-1 (CV) and 160 Fg-1 (EIS) are measured. The potential-driven ion exchange was evaluated using Probe Bean Deflection techniques. It is observed that ions (protons) are expulsed upon oxidation in acid media by the oxidation of hydroquinone moieties present on the carbon surface. In neutral media, when the potential is varied from values negative to positive of the potential of zero charge, cation release, followed by anion insertion, is found.
Collapse
|
38
|
Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers (Basel) 2023; 15:polym15051210. [PMID: 36904451 PMCID: PMC10006964 DOI: 10.3390/polym15051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Synthetic organic pigments like xanthene and azo dyes from the direct discharge of textile effluents are considered colossal global issues and attract the concern of scholars. Photocatalysis continues to be a very valuable pollution control method for industrial wastewater. Incorporations of metal oxide catalysts such as zinc oxide (ZnO) on mesoporous Santa Barbara Armophous-15 (SBA-15) support to improve catalyst thermo-mechanical stability have been comprehensively reported. However, charge separation efficiency and light absorption of ZnO/SBA-15 continue to be limiting its photocatalytic activity. Herein, we report a successful preparation of Ruthenium-induced ZnO/SBA-15 composite via conventional incipient wetness impregnation technique with the aim of boosting the photocatalytic activity of the incorporated ZnO. Physicochemical properties of the SBA-15 support, ZnO/SBA-15, and Ru-ZnO/SBA-15 composites were characterized by X-ray diffraction (XRD), N2 physisorption isotherms at 77 K, Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and transmission electron microscopy (TEM). The characterization outcomes exhibited that ZnO and ruthenium species have been successfully embedded into SBA-15 support, andtheSBA-15 support maintains its structured hexagonal mesoscopic ordering in both ZnO/SBA-15 and Ru-ZnO/SBA-15 composites. The photocatalytic activity of the composite was assessed through photo-assisted mineralization of aqueous MB solution, and the process was optimized for initial dye concentration and catalyst dosage. 50 mg catalyst exhibited significant degradation efficiency of 97.96% after 120 min, surpassing the efficiencies of 77% and 81% displayed by 10 and 30 mg of the as-synthesized catalyst. The photodegradation rate was found to decrease with an increase in the initial dye concentration. The superior photocatalytic activity of Ru-ZnO/SBA-15 over the binary ZnO/SBA-15 may be attributed to the slower recombination rate of photogenerated charges on the ZnO surface with the addition of ruthenium.
Collapse
|
39
|
Bivián-Castro EY, Zepeda-Navarro A, Guzmán-Mar JL, Flores-Alamo M, Mata-Ortega B. Ion-Imprinted Polymer Structurally Preorganized Using a Phenanthroline-Divinylbenzoate Complex with the Cu(II) Ion as Template and Some Adsorption Results. Polymers (Basel) 2023; 15:polym15051186. [PMID: 36904427 PMCID: PMC10007393 DOI: 10.3390/polym15051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The novel [Cuphen(VBA)2H2O] complex (phen: phenanthroline, VBA: vinylbenzoate) was prepared and used as a functional monomer to preorganize a new ion-imprinted polymer (IIP). By leaching the Cu(II) from the molecular imprinted polymer (MIP), [Cuphen(VBA)2H2O-co-EGDMA]n (EGDMA: ethylene glycol dimethacrylate), the IIP was obtained. A non-ion-imprinted polymer (NIIP) was also prepared. The crystal structure of the complex and some physicochemical, spectrophotometric techniques were also used for the MIP, IIP, and NIIP characterization. The results showed that the materials are nonsoluble in water and polar solvents, which are the main features of polymers. The surface area of the IIP is higher than the NIIP demonstrated by the blue methylene method. The SEM images show monoliths and particles smoothly packed together on spherical and prismatic-spherical surfaces in the morphology of MIP and IIP, respectively. Moreover, the MIP and IIP could be considered as mesoporous and microporous materials, shown by the size of the pores determined by the BET and BJH methods. Furthermore, the adsorption performance of the IIP was studied using copper(II) as a contaminant heavy metal. The maximum adsorption capacity of IIP was 287.45 mg/g at 1600 mg/L Cu2+ ions with 0.1 g of IIP at room temperature. The Freundlich model was found to best describe the equilibrium isotherm of the adsorption process. The competitive results indicate that the stability of the Cu-IIP complex is higher than the Ni-IIP complex with a selectivity coefficient of 1.61.
Collapse
Affiliation(s)
- Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
- Correspondence: ; Tel.: +52-(474)-7424314 (ext. 66576)
| | - Abraham Zepeda-Navarro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | - Jorge Luis Guzmán-Mar
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Ave. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Ciudad de México, Mexico
| | - Brenda Mata-Ortega
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
40
|
Superparamagnetic Multifunctionalized Chitosan Nanohybrids for Efficient Copper Adsorption: Comparative Performance, Stability, and Mechanism Insights. Polymers (Basel) 2023; 15:polym15051157. [PMID: 36904398 PMCID: PMC10007229 DOI: 10.3390/polym15051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
To limit the dangers posed by Cu(II) pollution, chitosan-nanohybrid derivatives were developed for selective and rapid copper adsorption. A magnetic chitosan nanohybrid (r-MCS) was obtained via the co-precipitation nucleation of ferroferric oxide (Fe3O4) co-stabilized within chitosan, followed by further multifunctionalization with amine (diethylenetriamine) and amino acid moieties (alanine, cysteine, and serine types) to give the TA-type, A-type, C-type, and S-type, respectively. The physiochemical characteristics of the as-prepared adsorbents were thoroughly elucidated. The superparamagnetic Fe3O4 nanoparticles were mono-dispersed spherical shapes with typical sizes (~8.5-14.7 nm). The adsorption properties toward Cu(II) were compared, and the interaction behaviors were explained with XPS and FTIR analysis. The saturation adsorption capacities (in mmol.Cu.g-1) have the following order: TA-type (3.29) > C-type (1.92) > S-type (1.75) > A-type(1.70) > r-MCS (0.99) at optimal pH0 5.0. The adsorption was endothermic with fast kinetics (except TA-type was exothermic). Langmuir and pseudo-second-order equations fit well with the experimental data. The nanohybrids exhibit selective adsorption for Cu(II) from multicomponent solutions. These adsorbents show high durability over multiple cycles with desorption efficiency > 93% over six cycles using acidified thiourea. Ultimately, QSAR tools (quantitative structure-activity relationships) were employed to examine the relationship between essential metal properties and adsorbent sensitivities. Moreover, the adsorption process was described quantitatively, using a novel three-dimensional (3D) nonlinear mathematical model.
Collapse
|
41
|
Moore EWP, Maya F. ZIF-8@Rhodamine B as a Self-Reporting Material for Pollutant Extraction Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:842. [PMID: 36903719 PMCID: PMC10005746 DOI: 10.3390/nano13050842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Herein, we have evaluated the potential of dye-encapsulation as a simple mechanism to self-report the stability of MOFs for pollutant extraction applications. This enabled the visual detection of material stability issues during the selected applications. As proof-of-concept, the zeolitic imidazolate framework (ZIF-8) material was prepared in aqueous medium and at room temperature in the presence of the dye rhodamine B. The total amount of loaded rhodamine B was determined using UV-vis spectrophotometry. The prepared dye-encapsulated ZIF-8 showed a comparable extraction performance with bare ZIF-8 for the removal of hydrophobic endocrine-disrupting phenols, such as 4-tert-octylphenol and 4-nonylphenol, and improved the extraction performance of more hydrophilic endocrine disruptors, such as bisphenol A and 4-tert-butylphenol.
Collapse
|
42
|
Synthesis of Xanthan Gum Anchored α-Fe 2O 3 Bionanocomposite Material for Remediation of Pb (II) Contaminated Aquatic System. Polymers (Basel) 2023; 15:polym15051134. [PMID: 36904374 PMCID: PMC10006926 DOI: 10.3390/polym15051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/12/2023] Open
Abstract
Increases in community and industrial activities have led to disturbances of the environmental balance and the contamination of water systems through the introduction of organic and inorganic pollutants. Among the various inorganic pollutants, Pb (II) is one of the heavy metals possessing non-biodegradable and the most toxic characteristics towards human health and the environment. The present study is focussed on the synthesis of efficient and eco-friendly adsorbent material that can remove Pb (II) from wastewater. A green functional nanocomposite material based on the immobilization of α-Fe2O3 nanoparticles with xanthan gum (XG) biopolymer has been synthesized in this study to be applied as an adsorbent (XGFO) for sequestration of Pb (II). Spectroscopic techniques such as scanning electron microscopy with energy dispersive X-ray (SEM-EDX), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet visible (UV-Vis) and X-ray photoelectron spectroscopy (XPS) were adopted for characterizing the solid powder material. The synthesized material was found to be rich in key functional groups such as -COOH and -OH playing important roles in binding the adsorbate particles through ligand-to-metal charge transfer (LMCT). Based on the preliminary results, adsorption experiments were conducted, and the data obtained were applied to four different adsorption isotherm models, viz the Langmuir, Temkin, Freundlich and D-R models. Based on the high values of R2 and low values of χ2, the Langmuir isotherm model was found to be the best model for simulation of data for Pb (II) adsorption by XGFO. The value of maximum monolayer adsorption capacity (Qm) was found to be 117.45 mg g-1 at 303 K, 126.23 mg g-1 at 313 K, 145.12 mg g-1 at 323 K and 191.27 mg g-1 at 323 K. The kinetics of the adsorption process of Pb (II) by XGFO was best defined by the pseudo-second-order model. The thermodynamic aspect of the reaction suggested that the reaction is endothermic and spontaneous. The outcomes proved that XGFO can be utilized as an efficient adsorbent material for the treatment of contaminated wastewater.
Collapse
|
43
|
Carbonized Leather Waste: A Review and Conductivity Outlook. Polymers (Basel) 2023; 15:polym15041028. [PMID: 36850311 PMCID: PMC9967325 DOI: 10.3390/polym15041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.
Collapse
|
44
|
Verner A, Tokarský J, Najser T, Matějová L, Kutláková KM, Kielar J, Peer V. Effects of Structure and Composition of Adsorbents on Competitive Adsorption of Gaseous Emissions: Experiment and Modeling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:724. [PMID: 36839092 PMCID: PMC9961998 DOI: 10.3390/nano13040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Dangerous gases arising from combustion processes must be removed from the air simply and cheaply, e.g., by adsorption. This work is focused on competitive adsorption experiments and force field-based molecular modeling of the interactions at the molecular level. Emission gas, containing CO, NO, SO2, and CO2, was adsorbed on activated carbon, clay mineral, silicon dioxide, cellulose, or polypropylene at two different temperatures. At 20 °C, activated carbon had the highest NO and SO2 adsorption capacity (120.83 and 3549.61 μg/g, respectively). At 110 °C, the highest NO and SO2 adsorption capacity (6.20 and 1182.46 μg/g, respectively) was observed for clay. CO was adsorbed very weakly, CO2 not at all. SO2 was adsorbed better than NO, which correlated with modeling results showing positive influence of carboxyl and hydroxyl functional groups on the adsorption. In addition to the wide range of adsorbents, the main novelty of this study is the modeling strategy enabling the simulation of surfaces with pores of controllable sizes and shapes, and the agreement of the results achieved by this strategy with the results obtained by more computationally demanding methods. Moreover, the agreement with experimental data shows the modeling strategy to be a valuable tool for further adsorption studies.
Collapse
Affiliation(s)
- Adam Verner
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- ENET Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jonáš Tokarský
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Faculty of Materials Science and Technology, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Tomáš Najser
- ENET Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Lenka Matějová
- Institute of Environmental Technology, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Kateřina Mamulová Kutláková
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jan Kielar
- ENET Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Václav Peer
- ENET Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
45
|
Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models. Molecules 2023; 28:molecules28031511. [PMID: 36771176 PMCID: PMC9919137 DOI: 10.3390/molecules28031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Global waste production is significantly rising with the increase in population. Efforts are being made to utilize waste in meaningful ways and increase its economic value. This research makes one such effort by utilizing gas-to-liquid (GTL)-derived biosolids, a significant waste produced from the wastewater treatment process. To understand the surface properties, the biosolid waste (BS) that is activated directly using potassium carbonate, labelled as KBS, has been characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and Brunauer-Emmett-Teller (BET). The characterization shows that the surface area of BS increased from 0.010 to 156 m2/g upon activation. The EDS and XPS results show an increase in the metal content after activation (especially iron); additionally, XRD revealed the presence of magnetite and potassium iron oxide upon activation. Furthermore, the magnetic field was recorded to be 0.1 mT using a tesla meter. The magnetic properties present in the activated carbon show potential for pollutant removal. Adsorption studies of methylene blue using KBS show a maximum adsorption capacity of 59.27 mg/g; the adsorption process is rapid and reaches equilibrium after 9 h. Modelling using seven different isotherm and kinetic models reveals the best fit for the Langmuir-Freundlich and Diffusion-chemisorptionmodels, respectively. Additional thermodynamic calculations conclude the adsorption system to be exothermic, spontaneous, and favoring physisorption.
Collapse
|
46
|
Elewa AM, Amer AA, Attallah MF, Gad HA, Al-Ahmed ZAM, Ahmed IA. Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1251. [PMID: 36770257 PMCID: PMC9919391 DOI: 10.3390/ma16031251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Rice husk was converted into activated carbon (AC) as a byproduct of agricultural waste in an electric furnace at 700 °C and chemically activated using three distinct processes: NaOH AC(C), acetic acid AC(C-1), phosphoric acid AC(C-2), and carbonization AC(C-3) without any chemical activation. To characterize the activated carbon and the removal efficiencies of Fe(III) and Mn(II) from aqueous solutions, various analytical tools were used. The results revealed that the capacities of the four adsorbents to adsorb Fe(III) or Mn(II) from an aqueous solution differ significantly. AC(C-3) was chosen for additional research. The impact of different operational factors, including pH, contact time, adsorbent dosage, starting metal ion concentration, interfering ions, and temperature, were investigated. The optimum pH values for Fe(III) and Mn(II) adsorption were found to be pH 3 and pH 6, respectively. The results obtained were utilized to assess the kinetics and thermodynamics of the adsorption process. The sorption of Fe(III) and Mn(II) ions was found to be a pseudo-second-order kinetic process, and the equilibrium data were fitted with the Langmuir isotherm. Additionally, the evidence suggests that an endothermic mechanism governs the adsorption process. The maximum adsorption capacities of Fe(III) and Mn(II) were 28.9 and 73.47 mg/g, respectively.
Collapse
Affiliation(s)
- Amal M. Elewa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A. Amer
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F. Attallah
- Analytical Chemistry and Control Department, Hot Laboratories and Waste Management Center, Atomic Energy Authority of Egypt, Cairo 13759, Egypt
| | - Hamdy A. Gad
- Analytical Chemistry and Control Department, Hot Laboratories and Waste Management Center, Atomic Energy Authority of Egypt, Cairo 13759, Egypt
| | - Zehbah Ali Mohamed Al-Ahmed
- Department of Chemistry, Faculty of Science and Art, King Khalid University, Dhahran Aljanoub, Abha 62224, Saudi Arabia
| | - Inas A. Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia
| |
Collapse
|
47
|
Xia C, Ye H, Wu Y, Garalleh HA, Garaleh M, Sharma A, Pugazhendhi A. Nanofibrous/biopolymeric membrane a sustainable approach to remove organic micropollutants: A review. CHEMOSPHERE 2023; 314:137663. [PMID: 36581125 DOI: 10.1016/j.chemosphere.2022.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Aquifers are severely polluted with organic and inorganic pollutants, posing a serious threat to the global ecological system's balance. While various traditional methods are available, the development of innovative methods for effluent treatment and reuse is critical. Polymers have recently been widely used in a variety of industry sectors due to their unique properties. Biopolymers are a biodegradable material that is also a viable alternative to synthetic polymers. Biopolymers are preferably obtained from cellulose and carrageenan molecules from various biological sources. While compared with conventional non-biodegradable polymeric materials, the biopolymer possesses unique characteristics such as renewability, cost-effectiveness, biodegradability, and biocompatibility. The improvements towards the biopolymeric (natural) membranes have also been thoroughly discussed. The use of nanofillers to stabilise and improve the effectiveness of biopolymeric membranes in the elimination of organic pollutants is one of the most recent developments. This was discovered that the majority of biopolymeric membranes technology consolidated on organic pollutants. More research should be directed toward against emerging organic/persistent organic pollutants (POP) and micropollutants. Furthermore, processes for regenerating and reusing utilized biopolymer-based carbon - based materials are emphasized.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haoran Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, 76130, Mexico
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
48
|
Adsorption Data Modeling and Analysis Under Scrutiny: A Clarion Call to Redress Recently Found Troubling Flaws. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
49
|
Khedr RF. Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption. Polymers (Basel) 2023; 15:686. [PMID: 36771989 PMCID: PMC9919292 DOI: 10.3390/polym15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Graft copolymerization has been a popular technique in recent years for adding different functional groups to polymers. In our research, polypropylene (PP) films are grafted with acrylonitrile (An) and acrylic acid (AAc) monomers to make them hydrophilic while retaining their mechanical qualities. Gamma radiation is used in this approach to establish active spots on an inert polymer that are appropriate for adding monomers radicals to form grafts, a procedure that is extremely difficult to perform using normal chemical processes. The graft parameters are investigated in order to acquire the highest percentage of graft. FTIR (Fourier transform infrared spectroscopy) spectra are used to analyze the grafting of AAc and An. SEM (scanning electron microscopy) and XRD (X-ray diffraction) micrographs are used to validate them. The specimens' tensile strength and hardness are measured and contrasted with blank PP films. Measurements are made of the effects of grafting on the tensile strength and elongation of the films, and a crucial grafting degree is established in order to preserve these properties. Water uptake is measured to adapt the copolymer to water treatment, and thermal behavior TGA (thermal gravimetric analysis) and DSC (diffraction scanning calorimeter) of the produced copolymer were performed. The elimination of cadmium was verified by an atomic absorption spectrophotometer (AAS) under different conditions of pH, time, and degree of grafting.
Collapse
Affiliation(s)
- Rania F Khedr
- Chemistry Department Al Leith, University College, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| |
Collapse
|
50
|
Varghese SA, Pulikkalparambil H, Promhuad K, Srisa A, Laorenza Y, Jarupan L, Nampitch T, Chonhenchob V, Harnkarnsujarit N. Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers (Basel) 2023; 15:polym15030648. [PMID: 36771949 PMCID: PMC9920369 DOI: 10.3390/polym15030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Waste management in the agricultural sector has become a major concern. Increased food production to satisfy the surge in population has resulted in the generation of large volumes of solid waste. Agro-waste is a rich source of biocompounds with high potential as a raw material for food packaging. Utilization of agro-waste supports the goal of sustainable development in a circular economy. This paper reviews recent trends and the development of agro-wastes from plant and animal sources into eco-friendly food packaging systems. Different plant and animal sources and their potential development into packaging are discussed, including crop residues, process residues, vegetable and fruit wastes, and animal-derived wastes. A comprehensive analysis of the properties and production methods of these packages is presented. Future aspects of agro-waste packaging systems and the inherent production problems are addressed.
Collapse
Affiliation(s)
- Sandhya Alice Varghese
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Harikrishnan Pulikkalparambil
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Lerpong Jarupan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Tarinee Nampitch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5045; Fax: +662-562-5046
| |
Collapse
|