1
|
Yin Y, Zhou W, Zhu J, Chen Z, Jiang L, Zhuang X, Chen J, Wei J, Lu X, Liu Y, Pang W, Zhang Q, Cao Y, Li Z, Zhu Y, Xiang Y. Generation of self-organized neuromusculoskeletal tri-tissue organoids from human pluripotent stem cells. Cell Stem Cell 2025; 32:157-171.e8. [PMID: 39657678 DOI: 10.1016/j.stem.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The human body function requires crosstalk between different tissues. An essential crosstalk is in the neuromusculoskeletal (NMS) axis involving neural, muscular, and skeletal tissues, which is challenging to model using human cells. Here, we describe the generation of three-dimensional, NMS tri-tissue organoids (hNMSOs) from human pluripotent stem cells through a co-development strategy. Staining, single-nucleus RNA sequencing, and spatial transcriptome profiling revealed the co-emergence and self-organization of neural, muscular, and skeletal lineages within individual organoids, and the neural domains of hNMSOs obtained a ventral-specific identity and produced motor neurons innervating skeletal muscles. The neural, muscular, and skeletal regions of hNMSOs exhibited maturation and established functional connections during development. Notably, structural, functional, and transcriptomic analyses revealed that skeletal support in hNMSOs benefited human muscular development. Modeling with hNMSOs also unveiled the neuromuscular alterations following pathological skeletal degeneration. Together, our study provides an accessible experimental model for future studies of human NMS crosstalk and abnormality.
Collapse
Affiliation(s)
- Yao Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinkui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziling Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuran Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yantong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Pang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinzhi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yajing Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhuoya Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuyan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
2
|
Kawabata S, Nakasa T, Nekomoto A, Yimiti D, Miyaki S, Adachi N. Osteophyte Cartilage as a Potential Source for Minced Cartilage Implantation: A Novel Approach for Articular Cartilage Repair in Osteoarthritis. Int J Mol Sci 2024; 25:5563. [PMID: 38791601 PMCID: PMC11122408 DOI: 10.3390/ijms25105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by cartilage degeneration, often leading to pain and functional impairment. Minced cartilage implantation (MCI) has emerged as a promising one-step alternative for large cartilage defects. However, the source of chondrocytes for MCI remains a challenge, particularly in advanced OA, as normal cartilage is scarce. We performed in vitro studies to evaluate the feasibility of MCI using osteophyte cartilage, which is present in patients with advanced OA. Osteophyte and articular cartilage samples were obtained from 22 patients who underwent total knee arthroplasty. Chondrocyte migration and proliferation were assessed using cartilage fragment/atelocollagen composites to compare the characteristics and regenerative potential of osteophytes and articular cartilage. Histological analysis revealed differences in cartilage composition between osteophytes and articular cartilage, with higher expression of type X collagen and increased chondrocyte proliferation in the osteophyte cartilage. Gene expression analysis identified distinct gene expression profiles between osteophytes and articular cartilage; the expression levels of COL2A1, ACAN, and SOX9 were not significantly different. Chondrocytes derived from osteophyte cartilage exhibit enhanced proliferation, and glycosaminoglycan production is increased in both osteophytes and articular cartilage. Osteophyte cartilage may serve as a viable alternative source of MCI for treating large cartilage defects in OA.
Collapse
Affiliation(s)
- Shingo Kawabata
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Tomoyuki Nakasa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima City 734-8551, Japan;
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| |
Collapse
|
3
|
Wang X, Wu P, Fu Y, Yang R, Li C, Chen Y, He A, Chen X, Ma D, Ma J, Zhang T. The circular RNA expression profile of human auricle cartilage and the role of circCOL1A2 in isolated microtia. Cell Signal 2024; 115:111017. [PMID: 38123043 DOI: 10.1016/j.cellsig.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microtia is one of the most common craniofacial birth defects worldwide, and its primary clinical manifestation is auricle deformity. Epigenetic factors are known to contribute to the etiology of microtia, yet the involvement of circular RNAs (circRNAs) in human auricle development and their association with microtia remains poorly understood. In this study, we aimed to analyze differentially expressed circRNAs and explore their functional implications in isolated microtia. By employing circRNA microarray analysis and bioinformatics approaches, we identified 340 differentially expressed circRNAs in auricle cartilage of patients with isolated microtia, comprising 152 upregulated and 188 downregulated circRNAs. A circRNA-mRNA co-expression network was constructed, followed by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Subsequently, we selected four significantly upregulated circRNAs from the co-expression network based on their association with cartilage development and validated their expressions in 30 isolated microtia and 30 control clinical auricle cartilage samples. Among these circRNAs, circCOL1A2, the most significantly upregulated circRNA, was selected as a representative circRNA for investigating its role in isolated microtia. Overexpression of circCOL1A2 significantly inhibited chondrocyte proliferation and chondrogenic differentiation of human mesenchymal stem cells. Additionally, circCOL1A2 upregulated Dermatan Sulfate Epimerase Like (DSEL) expression by sponging miR-637 through the competing endogenous RNA (ceRNA) mechanism. Notably, the downregulation of DSEL attenuated the inhibitory effect of circCOL1A2 overexpression on cell proliferation and chondrogenic differentiation. Collectively, these findings highlight the involvement of circCOL1A2 in the pathogenesis of isolated microtia and emphasize the potential significance of dysregulated circRNAs in disease development.
Collapse
Affiliation(s)
- Xin Wang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Peixuan Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaoyao Fu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Aijuan He
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
4
|
Lammi MJ, Qu C. Regulation of Oxygen Tension as a Strategy to Control Chondrocytic Phenotype for Cartilage Tissue Engineering and Regeneration. Bioengineering (Basel) 2024; 11:211. [PMID: 38534484 DOI: 10.3390/bioengineering11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
5
|
Wang T, Li Z, Zhao S, Liu Y, Guo W, Alarcòn Rodrìguez R, Wu Y, Wei R. Characterizing hedgehog pathway features in senescence associated osteoarthritis through Integrative multi-omics and machine learning analysis. Front Genet 2024; 15:1255455. [PMID: 38444758 PMCID: PMC10912584 DOI: 10.3389/fgene.2024.1255455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose: Osteoarthritis (OA) is a disease of senescence and inflammation. Hedgehog's role in OA mechanisms is unclear. This study combines Bulk RNA-seq and scRNA-seq to identify Hedgehog-associated genes in OA, investigating their impact on the pathogenesis of OA. Materials and methods: Download and merge eight bulk-RNA seq datasets from GEO, also obtain a scRNA-seq dataset for validation and analysis. Analyze Hedgehog pathway activity in OA using bulk-RNA seq datasets. Use ten machine learning algorithms to identify important Hedgehog-associated genes, validate predictive models. Perform GSEA to investigate functional implications of identified Hedgehog-associated genes. Assess immune infiltration in OA using Cibersort and MCP-counter algorithms. Utilize ConsensusClusterPlus package to identify Hedgehog-related subgroups. Conduct WGCNA to identify key modules enriched based on Hedgehog-related subgroups. Characterization of genes by methylation and GWAS analysis. Evaluate Hedgehog pathway activity, expression of hub genes, pseudotime, and cell communication, in OA chondrocytes using scRNA-seq dataset. Validate Hedgehog-associated gene expression levels through Real-time PCR analysis. Results: The activity of the Hedgehog pathway is significantly enhanced in OA. Additionally, nine important Hedgehog-associated genes have been identified, and the predictive models built using these genes demonstrate strong predictive capabilities. GSEA analysis indicates a significant positive correlation between all seven important Hedgehog-associated genes and lysosomes. Consensus clustering reveals the presence of two hedgehog-related subgroups. In Cluster 1, Hedgehog pathway activity is significantly upregulated and associated with inflammatory pathways. WGCNA identifies that genes in the blue module are most significantly correlated with Cluster 1 and Cluster 2, as well as being involved in extracellular matrix and collagen-related pathways. Single-cell analysis confirms the significant upregulation of the Hedgehog pathway in OA, along with expression changes observed in 5 genes during putative temporal progression. Cell communication analysis suggests an association between low-scoring chondrocytes and macrophages. Conclusion: The Hedgehog pathway is significantly activated in OA and is associated with the extracellular matrix and collagen proteins. It plays a role in regulating immune cells and immune responses.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedic Joint, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | | | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Yang Y, Koga H, Nakagawa Y, Nakamura T, Katagiri H, Takada R, Katakura M, Tsuji K, Sekiya I, Miyatake K. Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies. Arthritis Res Ther 2024; 26:17. [PMID: 38200556 PMCID: PMC10777653 DOI: 10.1186/s13075-023-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. METHODS Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. RESULTS In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein-protein interaction (PPI) network, 20 hub genes were identified, including MYC, CXCL8, ATF3, NR4A1, ZC3H12A, NR4A2, FOSB, and FOSL1. Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. CONCLUSION Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ryohei Takada
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Katakura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Negishi Y, Adili A, de Vega S, Momoeda M, Kaneko H, Cilek MZ, Yoshinaga C, Takafuji K, Otsuka Y, Shimoda M, Negishi-Koga T, Ishijima M, Okada Y. IL-6 Reduces Spheroid Sizes of Osteophytic Cells Derived from Osteoarthritis Knee Joint via Induction of Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:135-149. [PMID: 37918800 DOI: 10.1016/j.ajpath.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Osteophytes in osteoarthritis (OA) joints contribute to restriction of joint movement, joint pain, and OA progression, but little is known about osteophyte regulators. Examination of gene expression related to cartilage extracellular matrix, endochondral ossification, and growth factor signaling in articular cartilage and osteophytes obtained from OA knee joints showed that several genes such as COL1A1, VCAN, BGLAP, BMP8B, RUNX2, and SOST were overexpressed in osteophytes compared with articular cartilage. Ratios of mesenchymal stem/progenitor cells, which were characterized by co-expression of CD105 and CD166, were significantly higher in osteophytic cells than articular cells. A three-dimensional culture method for cartilage and osteophyte cells was developed by modification of cultures of self-assembled spheroid cell organoids (spheroids). These spheroids cultured in the media for mesenchymal stem cells containing transforming growth factor-β3 showed characteristic morphologies and gene expression profiles of articular cartilage and osteophytes, respectively. The effects of IL-1β, tumor necrosis factor-α, and IL-6 on the spheroids of articular and osteophytic cells were studied. To the best of our knowledge, they provide the first evidence that IL-6 suppresses the spheroid size of osteophytic cells by inducing apoptosis and reducing extracellular matrix molecules. These data show that IL-6 is the suppressor of osteophyte growth and suggest that IL-6 expression and/or activity are implicated in the regulation of osteophyte formation in pathologic joints.
Collapse
Affiliation(s)
- Yoshifumi Negishi
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arepati Adili
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Tokyo, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Momoeda
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mehmet Z Cilek
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Tokyo, Japan
| | - Chiho Yoshinaga
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuaki Takafuji
- Research Institute, Suntory Global Innovation Center, Ltd., Kyoto, Japan
| | - Yuta Otsuka
- Institute for Science of Life, Suntory Wellness, Ltd., Kyoto, Japan
| | - Masayuki Shimoda
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Muneaki Ishijima
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Tokyo, Japan; Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Jaswal AP, Kumar B, Roelofs AJ, Iqbal SF, Singh AK, Riemen AHK, Wang H, Ashraf S, Nanasaheb SV, Agnihotri N, De Bari C, Bandyopadhyay A. BMP signaling: A significant player and therapeutic target for osteoarthritis. Osteoarthritis Cartilage 2023; 31:1454-1468. [PMID: 37392862 DOI: 10.1016/j.joca.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE To explore the significance of BMP signaling in osteoarthritis (OA) etiology, and thereafter propose a disease-modifying therapy for OA. METHODS To examine the role of the BMP signaling in pathogenesis of OA, an Anterior Cruciate Ligament Transection (ACLT) surgery was performed to incite OA in C57BL/6J mouse line at postnatal day 120 (P120). Thereafter, to investigate whether activation of BMP signaling is necessary and sufficient to induce OA, we have used conditional gain- and loss-of-function mouse lines in which BMP signaling can be activated or depleted, respectively, upon intraperitoneal injection of tamoxifen. Finally, we locally inhibited BMP signaling through intra-articular injection of LDN-193189 pre- and post-onset surgically induced OA. The majority of the investigation has been conducted using micro-CT, histological staining, and immuno histochemistry to assess the disease etiology. RESULTS Upon induction of OA, depletion of SMURF1-an intra-cellular BMP signaling inhibitor in articular cartilage coincided with the activation of BMP signaling, as measured by pSMAD1/5/9 expression. In mouse articular cartilage, the BMP gain-of-function mutation is sufficient to induce OA even without surgery. Further, genetic, or pharmacological BMP signaling suppression also prevented pathogenesis of OA. Interestingly, inflammatory indicators were also significantly reduced upon LDN-193189 intra-articular injection which inhibited BMP signaling and slowed OA progression post onset. CONCLUSION Our findings showed that BMP signaling is crucial to the etiology of OA and inhibiting BMP signaling locally can be a potent strategy for alleviating OA.
Collapse
Affiliation(s)
- Akrit Pran Jaswal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Bhupendra Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sayeda Fauzia Iqbal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amaresh Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anna H K Riemen
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sanap Vaibhav Nanasaheb
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Nitin Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
9
|
Effects of Tuina on cartilage degradation and chondrocyte terminal differentiation in rats with knee osteoarthritis (KOA) via the Wnt/β-catenin signaling pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2023. [DOI: 10.1007/s11726-023-1354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
10
|
Knee Osteoarthritis-How Close Are We to Disease-Modifying Treatment: Emphasis on Metabolic Type Knee Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010140. [PMID: 36676089 PMCID: PMC9866724 DOI: 10.3390/life13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disease that affects cartilage, bone, and synovium as well as ligaments, menisci, and muscles [...].
Collapse
|
11
|
Tuerlings M, Janssen GMC, Boone I, van Hoolwerff M, Rodriguez Ruiz A, Houtman E, Suchiman HED, van der Wal RJP, Nelissen RGHH, Coutinho de Almeida R, van Veelen PA, Ramos YFM, Meulenbelt I. WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes. Osteoarthritis Cartilage 2023; 31:39-48. [PMID: 36208715 DOI: 10.1016/j.joca.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the co-expression network of the osteoarthritis (OA) risk gene WWP2 in articular cartilage and study cartilage characteristics when mimicking the effect of OA risk allele rs1052429-A on WWP2 expression in a human 3D in vitro model of cartilage. METHOD Co-expression behavior of WWP2 with genes expressed in lesioned OA articular cartilage (N = 35 samples) was explored. By applying lentiviral particle mediated WWP2 upregulation in 3D in vitro pellet cultures of human primary chondrocytes (N = 8 donors) the effects of upregulation on cartilage matrix deposition was evaluated. Finally, we transfected primary chondrocytes with miR-140 mimics to evaluate whether miR-140 and WWP2 are involved in similar pathways. RESULTS Upon performing Spearman correlations in lesioned OA cartilage, 98 highly correlating genes (|ρ| > 0.7) were identified. Among these genes, we identified GJA1, GDF10, STC2, WDR1, and WNK4. Subsequent upregulation of WWP2 on 3D chondrocyte pellet cultures resulted in a decreased expression of COL2A1 and ACAN and an increase in EPAS1 expression. Additionally, we observed a decreased expression of GDF10, STC2, and GJA1. Proteomics analysis identified 42 proteins being differentially expressed with WWP2 upregulation, which were enriched for ubiquitin conjugating enzyme activity. Finally, upregulation of miR-140 in 2D chondrocytes resulted in significant upregulation of WWP2 and WDR1. CONCLUSIONS Mimicking the effect of OA risk allele rs1052429-A on WWP2 expression initiates detrimental processes in the cartilage shown by a response in hypoxia associated genes EPAS1, GDF10, and GJA1 and a decrease in anabolic markers, COL2A1 and ACAN.
Collapse
Affiliation(s)
- M Tuerlings
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Boone
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M van Hoolwerff
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - A Rodriguez Ruiz
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - E Houtman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - H E D Suchiman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - R J P van der Wal
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R G H H Nelissen
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R Coutinho de Almeida
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Y F M Ramos
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Meulenbelt
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Forrester LA, Fang F, Jacobsen T, Hu Y, Kurtaliaj I, Roye BD, Guo XE, Chahine NO, Thomopoulos S. Transient neonatal shoulder paralysis causes early osteoarthritis in a mouse model. J Orthop Res 2022; 40:1981-1992. [PMID: 34812543 PMCID: PMC9124737 DOI: 10.1002/jor.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Neonatal brachial plexus palsy (NBPP) occurs in approximately 1.5 of every 1,000 live births. The majority of children with NBPP recover function of the shoulder. However, the long-term risk of osteoarthritis (OA) in this population is unknown. The purpose of this study was to investigate the development of OA in a mouse model of transient neonatal shoulder paralysis. Neonatal mice were injected twice per week for 4 weeks with saline in the right supraspinatus muscle (Saline, control) and botulinum toxin A (BtxA, transient paralysis) in the left supraspinatus muscle, and then allowed to recover for 20 or 36 weeks. Control mice received no injections, and all mice were sacrificed at 24 or 40 weeks. BtxA mice exhibited abnormalities in gait compared to controls through 10 weeks of age, but these differences did not persist into adulthood. BtxA shoulders had decreased bone volume (-9%) and abnormal trabecular microstructure compared to controls. Histomorphometry analysis demonstrated that BtxA shoulders had higher murine shoulder arthritis scale scores (+30%), and therefore more shoulder OA compared to controls. Articular cartilage of BtxA shoulders demonstrated stiffening of the tissue. Compared with controls, articular cartilage from BtxA shoulders had 2-fold and 10-fold decreases in Dkk1 and BMP2 expression, respectively, and 3-fold and 14-fold increases in Col10A1 and BGLAP expression, respectively, consistent with established models of OA. In summary, a brief period of paralysis of the neonatal mouse shoulder was sufficient to generate early signs of OA in adult cartilage and bone.
Collapse
Affiliation(s)
- Lynn Ann Forrester
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Timothy Jacobsen
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iden Kurtaliaj
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Benjamin D. Roye
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Root ZD, Allen C, Gould C, Brewer M, Jandzik D, Medeiros DM. A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution. Front Cell Dev Biol 2022; 10:809979. [PMID: 35242758 PMCID: PMC8887668 DOI: 10.3389/fcell.2022.809979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.
Collapse
Affiliation(s)
- Zachary D Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
14
|
Mast Cells Differentiated in Synovial Fluid and Resident in Osteophytes Exalt the Inflammatory Pathology of Osteoarthritis. Int J Mol Sci 2022; 23:ijms23010541. [PMID: 35008966 PMCID: PMC8745477 DOI: 10.3390/ijms23010541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Introduction: Osteophytes are a prominent feature of osteoarthritis (OA) joints and one of the clinical hallmarks of the disease progression. Research on osteophytes is fragmentary and modes of its contribution to OA pathology are obscure. Aim: To elucidate the role of osteophytes in OA pathology from a perspective of molecular and cellular events. Methods: RNA-seq of fully grown osteophytes, collected from tibial plateau of six OA patients revealed patterns corresponding to active extracellular matrix re-modulation and prominent participation of mast cells. Presence of mast cells was further confirmed by immunohistochemistry, performed on the sections of the osteophytes using anti-tryptase alpha/beta-1 and anti-FC epsilon RI antibodies and the related key up-regulated genes were validated by qRT-PCR. To test the role of OA synovial fluid (SF) in mast cell maturation as proposed by the authors, hematopoietic stem cells (HSCs) and ThP1 cells were cultured in a media supplemented with 10% SF samples, obtained from various grades of OA patients and were monitored using specific cell surface markers by flow cytometry. Proteomics analysis of SF samples was performed to detect additional markers specific to mast cells and inflammation that drive the cell differentiation and maturation. Results: Transcriptomics of osteophytes revealed a significant upregulation of mast cells specific genes such as chymase 1 (CMA1; 5-fold) carboxypeptidase A3 (CPA3; 4-fold), MS4A2/FCERI (FCERI; 4.2-fold) and interleukin 1 receptor-like 1 (IL1RL1; 2.5-fold) indicating their prominent involvement. (In IHC, anti-tryptase alpha/beta-1 and anti- FC epsilon RI-stained active mast cells were seen populated in cartilage, subchondral bone, and trabecular bone.) Based on these outcomes and previous learnings, the authors claim a possibility of mast cells invasion into osteophytes is mediated by SF and present in vitro cell differentiation assay results, wherein ThP1 and HSCs showed differentiation into HLA-DR+/CD206+ and FCERI+ phenotype, respectively, after exposing them to medium containing 10% SF for 9 days. Proteomics analysis of these SF samples showed an accumulation of mast cell-specific inflammatory proteins. Conclusions: RNA-seq analysis followed by IHC study on osteophyte samples showed a population of mast cells resident in them and may further accentuate inflammatory pathology of OA. Besides subchondral bone, the authors propose an alternative passage of mast cells invasion in osteophytes, wherein OA SF was found to be necessary and sufficient for maturation of mast cell precursor into effector cells.
Collapse
|
15
|
Garcia-Beltran C, Villarroya J, Plou C, Gavaldà-Navarro A, Casano P, Cereijo R, de Zegher F, López-Bermejo A, Ibáñez L, Villarroya F. Bone Morphogenetic Protein-8B Levels at Birth and in the First Year of Life: Relation to Metabolic-Endocrine Variables and Brown Adipose Tissue Activity. Front Pediatr 2022; 10:869581. [PMID: 35402348 PMCID: PMC8988030 DOI: 10.3389/fped.2022.869581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Bone morphogenetic protein-8B (BMP8B) is an adipokine produced by brown adipose tissue (BAT) contributing to thermoregulation and metabolic homeostasis in rodent models. In humans, BAT activity is particularly relevant in newborns and young infants. We assessed BMP8B levels and their relationship with BAT activity and endocrine-metabolic parameters in young infants to ascertain its potentiality as biomarker in early life. MATERIALS AND METHODS BMP8B concentrations were assessed longitudinally by ELISA in a cohort of 27 girls and 23 boys at birth, and at age 4 and 12 months, together with adiposity parameters (DXA), and circulating endocrine-metabolic variables. BAT activity was measured by infrared thermography. BMP8B gene expression (qRT-PCR) was determined in BAT, white fat, and liver samples from neonatal necropsies, and in placenta and cord blood. RESULTS BMP8B levels were high at birth, particularly in boys (P = 0.04 vs. girls), declined progressively, and remained well above those in healthy adults and pregnant women at age 1 year (P < 0.05 and P < 0.001, respectively). Neonatal BMP8B transcript levels were higher in BAT than in white fat, liver and cord blood. Circulating BMP8B levels during the first year of life marginally correlated with bone mineral density and gains in lean mass. CONCLUSION BMP8B levels are high at birth and decline progressively over the first year of life remaining above adult levels. Although changes in BMP8B concentrations overall reflect those in BAT activity during development, BMP8B levels are unlikely to be useful to predict individual variations in endocrine-metabolic status and BAT activity in healthy young infants.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Joan Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Cristina Plou
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Paula Casano
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Dr. Josep Trueta Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| |
Collapse
|
16
|
Khurana S, Schivo S, Plass JRM, Mersinis N, Scholma J, Kerkhofs J, Zhong L, van de Pol J, Langerak R, Geris L, Karperien M, Post JN. An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation. Front Bioeng Biotechnol 2021; 9:732917. [PMID: 34869253 PMCID: PMC8634894 DOI: 10.3389/fbioe.2021.732917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A fundamental question in cartilage biology is: what determines the switch between permanent cartilage found in the articular joints and transient hypertrophic cartilage that functions as a template for bone? This switch is observed both in a subset of OA patients that develop osteophytes, as well as in cell-based tissue engineering strategies for joint repair. A thorough understanding of the mechanisms regulating cell fate provides opportunities for treatment of cartilage disease and tissue engineering strategies. The objective of this study was to understand the mechanisms that regulate the switch between permanent and transient cartilage using a computational model of chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate decisions, we developed the software tool ANIMO, Analysis of Networks with interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 proteins with 200 interactions. We called this model ECHO, for executable chondrocyte. Previously, we showed that ECHO could be used to characterize mechanisms of cell fate decisions. ECHO was first developed based on a Boolean model of growth plate. Here, we show how the growth plate Boolean model was translated to ANIMO and how we adapted the topology and parameters to generate an articular cartilage model. In ANIMO, many combinations of overactivation/knockout were tested that result in a switch between permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used model checking to prioritize combination treatments for wet-lab validation. Three combinatorial treatments were chosen and tested on metatarsals from 1-day old rat pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and growth and resulted in increased cartilage hypertrophy. We show that our model describes cartilage formation, and that model checking can aid in choosing and prioritizing combinatorial treatments that interfere with normal cartilage development. Here we show that combinatorial treatments induce changes in the zonal distribution of cartilage, indication possible switches in cell fate. This indicates that simulations in ECHO aid in describing pathologies in which switches between cell fates are observed, such as OA.
Collapse
Affiliation(s)
- Sakshi Khurana
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Stefano Schivo
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands.,Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Jacqueline R M Plass
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Nikolas Mersinis
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jetse Scholma
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Johan Kerkhofs
- Biomechanics Research Unit, GIGA In Silico Medicine, ULiège, Liège, Belgium
| | - Leilei Zhong
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jaco van de Pol
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands.,Dept. of Computer Science, Aarhus University, Aarhus, Denmark
| | - Rom Langerak
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Marcel Karperien
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Janine N Post
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
17
|
Wang K, Esbensen Q, Karlsen T, Eftang C, Owesen C, Aroen A, Jakobsen R. Low-Input RNA-Sequencing in Patients with Cartilage Lesions, Osteoarthritis, and Healthy Cartilage. Cartilage 2021; 13:550S-562S. [PMID: 34775802 PMCID: PMC8808811 DOI: 10.1177/19476035211057245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. DESIGN Cartilage biopsies were collected from patients in 3 groups (n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. RESULTS RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. CONCLUSION The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.
Collapse
Affiliation(s)
- Katherine Wang
- Faculty of Medicine, University of
Oslo, Oslo, Norway,Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Katherine Wang, Faculty of Medicine,
University of Oslo, P.O. Box 1072 Blindern, 0316 Oslo, Norway.
| | - Q.Y. Esbensen
- Department of Clinical Molecular
Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway,Department of Clinical Molecular
Biology, University of Oslo, Oslo, Norway
| | - T.A. Karlsen
- Norwegian Center for Stem Cell
Research, Department of Immunology and Transfusion Medicine, Oslo University
Hospital, Rikshospitalet, Oslo, Norway
| | - C.N. Eftang
- Department of Pathology, Akershus
University Hospital, Lørenskog, Norway
| | - C. Owesen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway
| | - A. Aroen
- Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Oslo, Norway
| | - R.B. Jakobsen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Department of Health Management and
Health Economics, Institute of Health and Society, Faculty of Medicine, University
of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Karabıyık Acar Ö, Bedir S, Kayitmazer AB, Kose GT. Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. Int J Biol Macromol 2021; 188:300-312. [PMID: 34358603 DOI: 10.1016/j.ijbiomac.2021.07.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Injuries related to articular cartilage are among the most challenging musculoskeletal problems because of poor repair capacity of this tissue. The lack of efficient treatments for chondral defects has stimulated research on cartilage tissue engineering applications combining porous biocompatible scaffolds with stem cells in the presence of external stimuli. This work presents the role of rat bone marrow mesenchymal stem cell (BMSC) encapsulated-novel three-dimensional (3D) coacervate scaffolds prepared through complex coacervation between different chitosan salts (CHI) and sodium hyaluronate (HA). The 3D architecture of BMSC encapsulated scaffolds (HA/CHI) was shown by scanning electron microscopy (SEM) to have an interconnected structure to allow cell-cell and cell-matrix interactions. Chondrogenic induction of encapsulated BMSCs within HA/CHI coacervates demonstrated remarkable cellular viability in addition to the elevated expression levels of chondrogenic markers such as sex determining region Y-box 9 protein (SOX9), aggrecan (ACAN), cartilage oligomeric matrix protein (COMP) and collagen type II (COL2A1) by immunofluorescence staining, qPCR and ELISA test. Collectively, HA/CHI coacervates are promising candidates for future use of these scaffolds in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Özge Karabıyık Acar
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| | - Seden Bedir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
19
|
Deng C, Yang J, He H, Ma Z, Wang W, Zhang Y, Li T, He C, Wang J. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci 2021; 9:4891-4903. [PMID: 34047307 DOI: 10.1039/d1bm00535a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Repair of osteochondral defects is still a challenge, especially the regeneration of hyaline cartilage. Parathyroid hormone (PTH) can inhibit the hypertrophy of chondrocytes to maintain the phenotype of hyaline cartilage. Here, we aimed to construct a bio-printed biphasic scaffold with a mechanical gradient based on dual modification of silk fibroin (SF) for the integrated repair of osteochondral defects. Briefly, SF was grafted with PTH (SF-PTH) and covalently immobilized with methacrylic anhydride (SF-MA), respectively. Next, gelatin methacryloyl (GM) mixed with SF-PTH or SF-MA was used as a bio-ink for articular cartilage and subchondral bone regeneration. Finally, the GM + SF-PTH/GM + SF-MA osteochondral biphasic scaffold was constructed using 3D bioprinting technology, and implanted in a rabbit osteochondral defect model. In this study, the SF-PTH bio-ink was synthesized for the first time. In vitro results indicated that the GM + SF-MA bio-ink had good mechanical properties, while the GM + SF-PTH bio-ink inhibited the hypertrophy of chondrocytes and was beneficial for the production of hyaline cartilage extracellular matrix. Importantly, an integrated GM + SF-PTH/GM + SF-MA biphasic scaffold with a mechanical gradient was successfully constructed. The results in vivo demonstrated that the GM + SF-PTH/GM + SF-MA scaffold could promote the regeneration of osteochondral defects and maintain the phenotype of hyaline cartilage to a large extent. Collectively, our results indicate that the integrated GM + SF-PTH/GM + SF-MA biphasic scaffold constructed by 3D bioprinting is expected to become a new strategy for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Changxu Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Jin Yang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian 116000, Liaoning Province, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wenhao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Chuanglong He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China. and Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1956 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
20
|
Oo WM, Little C, Duong V, Hunter DJ. The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2921-2945. [PMID: 34262259 PMCID: PMC8273751 DOI: 10.2147/dddt.s295224] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a complex heterogeneous articular disease with multiple joint tissue involvement of varying severity and no regulatory-agency-approved disease-modifying drugs (DMOADs). In this review, we discuss the reasons necessitating the development of DMOADs for OA management, the classifications of clinical phenotypes or molecular/mechanistic endotypes from the viewpoint of targeted drug discovery, and then summarize the efficacy and safety profile of a range of targeted drugs in Phase 2 and 3 clinical trials directed to cartilage-driven, bone-driven, and inflammation-driven endotypes. Finally, we briefly put forward the reasons for failures in OA clinical trials and possible steps to overcome these barriers.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Christopher Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Vicky Duong
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, Zhang R, Bai X, Zhang H, Cai D. MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis 2021; 12:533. [PMID: 34031369 PMCID: PMC8144578 DOI: 10.1038/s41419-021-03800-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
Milk fat globule-epidermal growth factor (EGF) factor 8 (MFG-E8), as a necessary bridging molecule between apoptotic cells and phagocytic cells, has been widely studied in various organs and diseases, while the effect of MFG-E8 in osteoarthritis (OA) remains unclear. Here, we identified MFG-E8 as a key factor mediating chondrocyte senescence and macrophage polarization and revealed its role in the pathology of OA. We found that MFG-E8 expression was downregulated both locally and systemically as OA advanced in patients with OA and in mice after destabilization of the medial meniscus surgery (DMM) to induce OA. MFG-E8 loss caused striking progressive articular cartilage damage, synovial hyperplasia, and massive osteophyte formation in OA mice, which was relieved by intra-articular administration of recombinant mouse MFG-E8 (rmMFG-E8). Moreover, MFG-E8 restored chondrocyte homeostasis, deferred chondrocyte senescence and reprogrammed macrophages to the M2 subtype to alleviate OA. Further studies showed that MFG-E8 was inhibited by miR-99b-5p, expression of which was significantly upregulated in OA cartilage, leading to exacerbation of experimental OA partially through activation of NF-κB signaling in chondrocytes. Our findings established an essential role of MFG-E8 in chondrocyte senescence and macrophage reprogramming during OA, and identified intra-articular injection of MFG-E8 as a potential therapeutic target for OA prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Lu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianying Pan
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Bingsheng Luo
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hua Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiaochun Bai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
22
|
Guan M, Pan D, Zhang M, Leng X, Yao B. Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes. J Orthop Surg Res 2021; 16:208. [PMID: 33752715 PMCID: PMC7983396 DOI: 10.1186/s13018-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.
Collapse
Affiliation(s)
- Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130117 China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
23
|
van Eegher S, Perez-Lozano ML, Toillon I, Valour D, Pigenet A, Citadelle D, Bourrier C, Courtade-Gaïani S, Grégoire L, Cléret D, Malbos S, Nourissat G, Sautet A, Lafage-Proust MH, Pastoureau P, Rolland-Valognes G, De Ceuninck F, Berenbaum F, Houard X. The differentiation of prehypertrophic into hypertrophic chondrocytes drives an OA-remodeling program and IL-34 expression. Osteoarthritis Cartilage 2021; 29:257-268. [PMID: 33301945 DOI: 10.1016/j.joca.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We hypothesize that chondrocytes from the deepest articular cartilage layer are pivotal in maintaining cartilage integrity and that the modification of their prehypertrophic phenotype to a hypertrophic phenotype will drive cartilage degradation in osteoarthritis. DESIGN Murine immature articular chondrocytes (iMACs) were successively cultured into three different culture media to induce a progressive hypertrophic differentiation. Chondrocyte were phenotypically characterized by whole-genome microarray analysis. The expression of IL-34 and its receptors PTPRZ1 and CSF1R in chondrocytes and in human osteoarthritis tissues was assessed by RT-qPCR, ELISA and immunohistochemistry. The expression of bone remodeling and angiogenesis factors and the cell response to IL-1β and IL-34 were investigated by RT-qPCR and ELISA. RESULTS Whole-genome microarray analysis showed that iMACs, prehypertrophic and hypertrophic chondrocytes each displayed a specific phenotype. IL-1β induced a stronger catabolic effect in prehypertrophic chondrocytes than in iMACs. Hypertrophic differentiation of prehypertrophic chondrocytes increased Bmp-2 (95%CI [0.78; 1.98]), Bmp-4 (95%CI [0.89; 1.59]), Cxcl12 (95%CI [2.19; 5.41]), CCL2 (95%CI [3.59; 11.86]), Mmp 3 (95%CI [10.29; 32.14]) and Vegf mRNA expression (95%CI [0.20; 1.74]). Microarray analysis identified IL-34, PTPRZ1 and CSFR1 as being strongly overexpressed in hypertrophic chondrocytes. IL-34 was released by human osteoarthritis cartilage; its receptors were expressed in human osteoarthritis tissues. IL-34 stimulated CCL2 and MMP13 in osteoblasts and hypertrophic chondrocytes but not in iMACs or prehypertrophic chondrocytes. CONCLUSION Our results identify prehypertrophic chondrocytes as being potentially pivotal in the control of cartilage and subchondral bone integrity. Their differentiation into hypertrophic chondrocytes initiates a remodeling program in which IL-34 may be involved.
Collapse
Affiliation(s)
- S van Eegher
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - M-L Perez-Lozano
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - I Toillon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - D Valour
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | - A Pigenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - D Citadelle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - C Bourrier
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | | | - L Grégoire
- Soladis, 94 Rue Saint-Lazare, F-75009, Paris, France
| | - D Cléret
- Université de Lyon - Université Jean Monnet, INSERM U1059, Faculté de Médecine, F-42270, Saint-Priest en Jarez, France
| | - S Malbos
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - G Nourissat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France; Clinique Maussins-Nollet, Ramsay Générale de Santé, F-75019, Paris, France
| | - A Sautet
- Department of Orthopaedic Surgery and Traumatology, APHP Saint-Antoine Hospital, F-75012, Paris, France
| | - M-H Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059, Faculté de Médecine, F-42270, Saint-Priest en Jarez, France
| | - P Pastoureau
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | | | - F De Ceuninck
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | - F Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France; Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris.
| | - X Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| |
Collapse
|
24
|
Shi C, Zheng W, Wang J. lncRNA-CRNDE regulates BMSC chondrogenic differentiation and promotes cartilage repair in osteoarthritis through SIRT1/SOX9. Mol Cell Biochem 2021; 476:1881-1890. [PMID: 33479807 DOI: 10.1007/s11010-020-04047-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is the most common chronic and degenerative joint disease. Although traditional OA medications can partially relieve pain, these medications cannot completely cure OA. Therefore, it is particularly important to find an effective treatment for OA. This study explored the function of long non-coding RNA (lncRNA)-colorectal neoplasia differentially expressed gene (CRNDE) in the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the underlying molecular mechanism, aiming to develop a new treatment method for osteoarthritis. BMSCs were isolated from rat bone marrow using the gradient centrifugation method. And BMSC chondrogenic differentiation was induced with chondrogenic medium. The expression of lncRNA-CRNDE was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Silent information regulator factor 2-related enzyme 1 (SIRT1) and cartilage marker genes Aggrecan and collagen 2 (α1) protein expression were researched using western blot. Alcian blue staining was employed to examine the content of cartilage matrix proteoglycan glycosaminoglycan (GAG). The interaction between lncRNA-CRNDE and SIRT1 was detected by RNA pull-down and RNA immunoprecipitation (RIP) assay. Ubiquitination experiments were performed to measure the ubiquitination level of SIRT1. The combination between SMAD ubiquitination regulatory factor 2 (SMURF2) and SIRT1, as well as SRY-related high-mobility-group box 9 (SOX9) and collagen 2 (α1) promoter, was detected by Co-immunoprecipitation or ChIP. With the prolongation of induction time, the expression of lncRNA-CRNDE, SIRT1, cartilage marker genes Aggrecan and collagen 2 (α1) in BMSC osteogenic differentiation was gradually increased. Also, the content of cartilage matrix proteoglycan GAG was gradually elevated with the extension of the induction time. Further increase in the expression of SIRT1, cartilage marker genes Aggrecan and collagen 2 (α1) by overexpression of lncRNA-CRNDE also indicated elevated GAG content. RNA pull-down and RIP assay confirmed the binding between lncRNA-CRNDE and SIRT1. qRT-PCR and western blot showed that interference with lncRNA-CRNDE significantly inhibited the protein expression of SIRT1. BMSCs transfected with si-CRNDE increased ubiquitination levels of SIRT1 mediated by the E3 ligase SMURF2, leading to the reduced protein stability of SIRT1. However, overexpression of lncRNA-CRNDE increased the binding ability of SOX9 and collagen 2 (α1) promoter, which was reversed by the simultaneous transfection of CRNDE overexpression (pcDNA-CRNDE) and SIRT1 small interfering RNA (si-SIRT1). lncRNA-CRNDE regulates BMSC chondrogenic differentiation to promote cartilage repair in osteoarthritis through SIRT1/SOX9.
Collapse
Affiliation(s)
- Chengdi Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
25
|
Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. J Orthop Surg Res 2021; 16:8. [PMID: 33407721 PMCID: PMC7788833 DOI: 10.1186/s13018-020-02148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
26
|
Kuhi L, Tamm AE, Tamm AO, Kisand K. Cartilage collagen neoepitope C2C in urine as an integrative diagnostic marker for early knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100096. [DOI: 10.1016/j.ocarto.2020.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
|
27
|
Roelofs AJ, Kania K, Rafipay AJ, Sambale M, Kuwahara ST, Collins FL, Smeeton J, Serowoky MA, Rowley L, Wang H, Gronewold R, Kapeni C, Méndez-Ferrer S, Little CB, Bateman JF, Pap T, Mariani FV, Sherwood J, Crump JG, De Bari C. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann Rheum Dis 2020; 79:1625-1634. [PMID: 32963046 PMCID: PMC8136618 DOI: 10.1136/annrheumdis-2020-218350] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA. METHODS Fluorescent genetic cell-labelling and tracing mouse models were induced with tamoxifen to switch on reporter expression, as appropriate, followed by surgery to induce destabilisation of the medial meniscus. Contributions of fluorescently labelled cells to osteophytes after 2 or 8 weeks, and their molecular identity, were analysed by histology, immunofluorescence staining and RNA in situ hybridisation. Pdgfrα-H2BGFP mice and Pdgfrα-CreER mice crossed with multicolour Confetti reporter mice were used for identification and clonal tracing of mesenchymal progenitors. Mice carrying Col2-CreER, Nes-CreER, LepR-Cre, Grem1-CreER, Gdf5-Cre, Sox9-CreER or Prg4-CreER were crossed with tdTomato reporter mice to lineage-trace chondrocytes and stem/progenitor cell subpopulations. RESULTS Articular chondrocytes, or skeletal stem cells identified by Nes, LepR or Grem1 expression, did not give rise to osteophytes. Instead, osteophytes derived from Pdgfrα-expressing stem/progenitor cells in periosteum and synovium that are descendants from the Gdf5-expressing embryonic joint interzone. Further, we show that Sox9-expressing progenitors in periosteum supplied hybrid skeletal cells to the early osteophyte, while Prg4-expressing progenitors from synovial lining contributed to cartilage capping the osteophyte, but not to bone. CONCLUSION Our findings reveal distinct periosteal and synovial skeletal progenitors that cooperate to form osteophytes in OA. These cell populations could be targeted in disease modification for treatment of OA.
Collapse
Affiliation(s)
- Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Karolina Kania
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexandra J Rafipay
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Meike Sambale
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Stephanie T Kuwahara
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Fraser L Collins
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Joanna Smeeton
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Maxwell A Serowoky
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Lynn Rowley
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - René Gronewold
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Chrysa Kapeni
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratories, Kolling Institute of Medical Research, The University of Sydney, St Leonards, New South Wales, Australia
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Francesca V Mariani
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - J Gage Crump
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
28
|
Dou P, He Y, Yu B, Duan J. Downregulation of microRNA-29b by DNMT3B decelerates chondrocyte apoptosis and the progression of osteoarthritis via PTHLH/CDK4/RUNX2 axis. Aging (Albany NY) 2020; 13:7676-7690. [PMID: 33177241 PMCID: PMC7993672 DOI: 10.18632/aging.103778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
The correlation between DNA methyltransferases (DNMTs) and microRNAs (miRNAs) has been well-established, but its interaction in osteoarthritis (OA) has been barely clarified. This study aimed to analyze the relationship between DNMT3B and miR-29b as well as their implications in OA. Our results revealed that DNMT3B was downregulated while miR-29b was upregulated in OA cartilage tissues relative to normal cartilage tissues. Hypermethylation of specific CpG sites in the miR-29b promoter region induced by DNMT3B contributed to downregulation of miR-29b in OA chondrocytes. Furthermore, luciferase activity determination demonstrated that miR-29b targeted and negatively regulated the parathyroid hormone-like hormone (PTHLH). Moreover, the PTHLH upregulation induced by miR-29b methylation led to the enhancement of chondrocyte growth and suppression of their apoptosis and extracellular matrix degradation, which was achieved by the upregulation cyclin-dependent kinase 4 (CDK4) expression. Co-IP suggested that CDK4 induced ubiquitination of RUNX2, which could be enhanced by DNMT3B. In the OA mouse model induced by destabilization of the medial meniscus, overexpression of DNMT3B was observed to downregulate the expression of RUNX2 whereby preventing OA-induced loss of chondrocytes. Hence, the DNMT3B/miR-29b/PTHLH/CDK4/RUNX2 axis was found to be involved in the apoptosis of chondrocytes induced by OA, highlighting a novel mechanism responsible for OA progression.
Collapse
Affiliation(s)
- Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Yu He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Bo Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| |
Collapse
|
29
|
Kumar A, Palit P, Thomas S, Gupta G, Ghosh P, Goswami RP, Kumar Maity T, Dutta Choudhury M. Osteoarthritis: Prognosis and emerging therapeutic approach for disease management. Drug Dev Res 2020; 82:49-58. [PMID: 32931079 DOI: 10.1002/ddr.21741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA), a disorder of joints, is prevalent in older age. The contemporary cure for OA is aimed to confer symptomatic relief, consisting of temporary pain and swelling relief. In this paper, we discuss various modalities responsible for the onset of OA and associated with its severity. Inhibition of chondrocytes receptors such as DDR2, SDF-1, Asporin, and CXCR4 by specific pharmacological inhibitors attenuates OA, a critical step for finding potential disease modifying drugs. We critically analyzed recent OA studies with an emphasis on intermediate target molecules for OA intervention. We also explored some novel and safe treatments for OA by considering disease prognosis crosstalk with cellular signaling pathways.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Sabu Thomas
- Department of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.,Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, Rajasthan, India
| | - Parasar Ghosh
- Department of Rheumatology, Institute of Post Graduate Medical Education &Research, Kolkata, India
| | | | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | |
Collapse
|
30
|
Peng L, Jin S, Lu J, Ouyang C, Guo J, Xie Z, Shen H, Wang P. Association between growth differentiation factor 5 rs143383 genetic polymorphism and the risk of knee osteoarthritis among Caucasian but not Asian: a meta-analysis. Arthritis Res Ther 2020; 22:215. [PMID: 32928309 PMCID: PMC7488690 DOI: 10.1186/s13075-020-02306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A few months ago, the Bioscience Reports journal showed that growth differentiation factor 5 (GDF5) rs143383 genetic polymorphism increases the susceptibility of knee osteoarthritis (KOA), but previous studies' results have debates about available data. Considering the availability of more recent data, we focus on clarifying the relationship of KOA and GDF5 rs143383 genetic polymorphism by a meta-analysis of case-control trial data. METHODS The eligible studies from the time of database established to Oct. 2019 were collected from PubMed, Springer, Cochrane library, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang library. Odds ratios (OR) and 95% confidence intervals (CI) were used to estimate the association between these polymorphisms and KOA risk. The meta-analysis was completed by STATA 18.0 software. RESULTS A total of 196 studies were collected, 16 of them included in final meta-analysis (7997 cases and 12,684 controls). There was significant association between GDF5 rs143383 polymorphism and KOA in all genetic models (for Allele model (C versus T): OR = 0.84 (95% CI = 0.76-0.91); dominate model (CC+CT versus TT): OR = 0.80 (95% CI = 0.72-0.90); recessive model (CC versus CT+TT): OR = 0.79 (95% CI = 0.68-0.92); heterozygote model (CT versus CC+TT): OR = 0.89 (95% CI = 0.80-0.97); homozygous model (CC versus TT): OR = 0.71 (95% CI = 0.60-0.85)). In the subgroup analysis, we obtained the results that there is no significance among Asians. CONCLUSION GDF5 rs143383 genetic polymorphism increases the risk of KOA among Caucasians; CC genotype and C allele are protective factors for the susceptibility of KOA among Caucasians.
Collapse
Affiliation(s)
- Lei Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Song Jin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China
| | - Jiping Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Chao Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Jiang Guo
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China. .,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China. .,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
31
|
Akaraphutiporn E, Sunaga T, Bwalya EC, Echigo R, Okumura M. Alterations in characteristics of canine articular chondrocytes in non-passaged long-term monolayer culture: Matter of differentiation, dedifferentiation and redifferentiation. J Vet Med Sci 2020; 82:793-803. [PMID: 32350166 PMCID: PMC7324834 DOI: 10.1292/jvms.20-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effects of culture time on phenotype stability of canine
articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage
(P3) CACs isolated from four cartilage samples were seeded at three different initial
seeding densities (0.2 × 104, 1.0 × 104 and 5.0 × 104
cells/cm2) and maintained in monolayer condition up to 8 weeks without
undergoing subculture after confluence. The characteristic changes of chondrocytes during
the culture period were evaluated based on the cell morphology, cell proliferation,
glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure
of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a
capability to grow and proliferate up to 4 weeks. Alcian blue staining and
Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis
was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA
expression profile was dramatically affected by prolonged culture time, with a significant
downregulation of collagen type I, whereas the expression of
collagen type II, aggrecan, Sox9 and
matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In
addition, transmission electron microscopy (TEM) result indicated dilation of rough
endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These
findings demonstrate that the chondrocytes phenotype could be partially redifferentiated
through the spontaneous redifferentiation process in long-term cultures using standard
culture medium without the addition of chondrogenic supplements or tissue-culture
scaffolds.
Collapse
Affiliation(s)
- Ekkapol Akaraphutiporn
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Eugene C Bwalya
- Department of Clinical Studies, Samora Machel School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Ryosuke Echigo
- Veterinary Medical Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
32
|
Schivo S, Khurana S, Govindaraj K, Scholma J, Kerkhofs J, Zhong L, Huang X, van de Pol J, Langerak R, van Wijnen AJ, Geris L, Karperien M, Post JN. ECHO, the executable CHOndrocyte: A computational model to study articular chondrocytes in health and disease. Cell Signal 2020; 68:109471. [DOI: 10.1016/j.cellsig.2019.109471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
|
33
|
Multifactor dimensionality reduction reveals a strong gene-gene interaction between STC1 and COL11A1 genes as a possible risk factor of knee osteoarthritis. Mol Biol Rep 2020; 47:2627-2634. [PMID: 32140959 DOI: 10.1007/s11033-020-05351-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Articular cartilage is an avascular tissue with a structure that allows it to support and cushion the overload of the surfaces in contact. It maintains its metabolic functions due to the contribution of different signaling pathways. However, several factors play a role in its deterioration, allowing to the development of osteoarthritis (OA), and one of the major factors is genetic. Our goal was to identify gene-gene interactions (epistasis) between five signaling pathways involved in the articular cartilage metabolism as possible indicators of OA risk. We applied the Multifactor-Dimensionality Reduction (MDR) method to identify and characterize the epistasis between 115 SNPs located in 73 genes related to HIF-1α, Wnt/β-catenin, cartilage extracellular matrix metabolism, oxidative stress, and uric acid transporters. Ninety three patients diagnosed with primary knee OA and 150 healthy controls were included in the study. Genotyping was performed with the OpenArray system, the statistical analysis was carried out with the STATA software v14, and epistasis was analyzed with the MDR software v3.0.2. The MDR analysis revealed that the best interaction model was between polymorphisms rs17786744 of the STC1 gene and rs2615977 of the COL11A1 gene, with an entropy value of 4.44%, CVC 8/10, OR 5.60, 95% CI 3.27-9.59, p < 0.0001. Under this interaction model, we identified high and low risk genotypes involved in OA development. Our results suggest complex interactions between STC1 and COL11A1 genes that might have an impact on genetic susceptibility to develop OA. Further studies are required to confirm it.
Collapse
|
34
|
Skrepnik N. Therapies for osteoarthritis today and tomorrow: Review. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteoarthritis is a common human disease with well understood pathophysiology, signs and symptoms, prevalence, risk factors, pain, and suffering with great understanding of personal, economic and social effects around the world. There are no drugs or treatments considered "disease modifying", with symptomatic control aiming to stave off the final solution of total joint replacement. Regenerative medicine and use of mesenchymal stem cells (MSC) promised hope to change that but have so far fallen short. This review focuses on current knowledge and use of MSC in clinic, completed research, and future directions for development of this once so promising biological treatment. Powerful treatment for pain in form of monoclonal antibodies against Nerve Growth Factor (NGF) are getting close to FDA approval in the US. Wnt signaling pathway modulators that decrease inflammation, increase function and potential to regenerate cartilage should be presented to the FDA early next year.
Collapse
|
35
|
Tangredi BP, Lawler DF. Osteoarthritis from evolutionary and mechanistic perspectives. Anat Rec (Hoboken) 2019; 303:2967-2976. [PMID: 31854144 DOI: 10.1002/ar.24339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Developmental osteogenesis and the pathologies associated with tissues that normally are mineralized are active areas of research. All of the basic cell types of skeletal tissue evolved in early aquatic vertebrates. Their characteristics, transcription factors, and signaling pathways have been conserved, even as they adapted to the challenge imposed by gravity in the transition to terrestrial existence. The response to excess mechanical stress (among other factors) can be expressed in the pathologic phenotype described as osteoarthritis (OA). OA is mediated by epigenetic modification of the same conserved developmental gene networks, rather than by gene mutations or new chemical signaling pathways. Thus, these responses have their evolutionary roots in morphogenesis. Epigenetic channeling and heterochrony, orchestrated primarily by microRNAs, maintain the sequence of these responses, while allowing variation in their timing that depends at least partly on the life history of the individual.
Collapse
Affiliation(s)
- Basil P Tangredi
- Vermont Institute of Natural Sciences, Quechee, Vermont
- Sustainable Agriculture Program, Green Mountain College, Poultney, Vermont
| | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois
- Illinois State Museum, Springfield, Illinois
- Pacific Marine Mammal Center, Laguna Beach, California
| |
Collapse
|
36
|
Comparison of polysaccharides in articular cartilage regeneration associated with chondrogenic and autophagy-related gene expression. Int J Biol Macromol 2019; 146:922-930. [PMID: 31726172 DOI: 10.1016/j.ijbiomac.2019.09.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023]
Abstract
Articular cartilage exhibits reduced self-healing following degeneration. This research evaluated the effects of hydrogels derived from various polysaccharides-gellan gum (GG), alginate, and agarose-on cartilage regeneration compared with that of hyaluronic acid (HA), which is commonly used in cartilage tissue engineering. Chondrocytes were isolated from the articular cartilage of New Zealand White (NZW) rabbits and stimulated with IL-1β followed by incubation with polysaccharides. The expressions of NF-κB and Cox-2 were decreased and those of IκBα, Sox-9, aggrecan, and type II collagen were increased in HA, GG, and Alginate groups. Osteochondral defects in NZW rabbits were treated with intra-articular polysaccharide injections; all except alginate resulted in tissue regeneration. Significant improvements were observed in cartilage regeneration in the GG and agarose groups. These results show that GG and agarose improve cartilage regeneration by suppressing inflammatory mediators and inducing cartilage formation and autophagy-related gene expression, indicating their potential for cartilage tissue engineering.
Collapse
|
37
|
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 2019; 76:3939-3952. [PMID: 31201464 PMCID: PMC11105481 DOI: 10.1007/s00018-019-03191-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
38
|
Sanjurjo-Rodriguez C, Baboolal TG, Burska AN, Ponchel F, El-Jawhari JJ, Pandit H, McGonagle D, Jones E. Gene expression and functional comparison between multipotential stromal cells from lateral and medial condyles of knee osteoarthritis patients. Sci Rep 2019; 9:9321. [PMID: 31249374 PMCID: PMC6597541 DOI: 10.1038/s41598-019-45820-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder. Multipotential stromal cells (MSCs) have a crucial role in joint repair, but how OA severity affects their characteristics remains unknown. Knee OA provides a good model to study this, as osteochondral damage is commonly more severe in the medial weight-bearing compartment compared to lateral side of the joint. This study utilised in vitro functional assays, cell sorting, gene expression and immunohistochemistry to compare MSCs from medial and lateral OA femoral condyles. Despite greater cartilage loss and bone sclerosis in medial condyles, there was no significant differences in MSC numbers, growth rates or surface phenotype. Culture-expanded and freshly-purified medial-condyle MSCs expressed higher levels of several ossification-related genes. Using CD271-staining to identify MSCs, their presence and co-localisation with TRAP-positive chondroclasts was noted in the vascular channels breaching the osteochondral junction in lateral condyles. In medial condyles, MSCs were additionally found in small cavities within the sclerotic plate. These data indicate subchondral MSCs may be involved in OA progression by participating in cartilage destruction, calcification and sclerotic plate formation and that they remain abundant in severe disease. Biological or biomechanical modulation of these MSCs may be a new strategy towards cartilage and bone restoration in knee OA.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodriguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,University of A Coruña, Cell Therapy and Regenerative Medicine group, Biomedical Sciences, Medicine and Physiotherapy department; CIBER-BBN, Institute of Biomedical Research of A Coruña (INIBIC)-Centre of Advanced Scientific Researches (CICA), A Coruña, Spain
| | - Thomas G Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom
| | - Agata N Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Clinical Pathology department, Mansoura University, Mansoura, Egypt
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom.,Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom.,Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
39
|
Fernández-Torres J, Martínez-Nava GA, Oliviero F, López-Reyes AG, Martínez-Flores K, Garrido-Rodríguez D, Francisco-Balderas A, Zamudio-Cuevas Y. Common gene variants interactions related to uric acid transport are associated with knee osteoarthritis susceptibility. Connect Tissue Res 2019; 60:219-229. [PMID: 29855200 DOI: 10.1080/03008207.2018.1483359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The presence of genetic variants in uric acid (UA) transporters can be associated with hyperuricemia, and therefore with an increased risk of monosodium urate (MSU) crystal precipitation. The inflammatory process triggered by these crystals leads to cartilage damage, which, in turn, could promote knee osteoarthritis (KOA). OBJECTIVE To determine whether genetic polymorphisms of the UA transporters and their interactions are associated with KOA. MATERIALS AND METHODS Two hundred forty-three unrelated Mexican-mestizo individuals were recruited for this case-control study. Ninety-three of them were KOA patients but without gout, and one hundred and fifty healthy individuals with no symptoms or signs of KOA were recruited as controls. Forty-one single-nucleotide polymorphisms (SNPs) involved in the UA transporters were genotyped with OpenArray technology in a QuantStudio 12K flex-System with both cases and controls. RESULTS After adjusting by age, gender, BMI, and ancestry, significant associations were found for eight SNPs: rs1260326 (GCKR), rs780093 (GCKR), rs17050272 (INHBB), rs1471633 (PDZK1), rs12129861 (PDZK1), rs7193778 (IGF1R), rs17786744 (STC1), and rs1106766 (R3HDM2). With respect to gene-gene interactions, the pairwise interactions of rs112129861 (PDZK1) and rs7193778 (IGF1R); rs17050272 (INHBB) and rs1106766 (R3HDM2); rs1106766 (R3HDM2) and rs780093 (GCKR); rs1260326 (GCKR) and rs17786744 (STC1); and rs17786744 (STC1) and rs1106766 (R3HDM2) make it possible to visualize the synergistic or antagonistic effect of their genotypes or alleles on KOA development. CONCLUSIONS Our preliminary results show that the common gene variants related to UA transport are associated with KOA in the Mexican population. Further studies must be carried out to corroborate it.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- a Musculoskeletal and Rheumatic Diseases Division , Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" , Mexico City , Mexico
| | - Gabriela Angélica Martínez-Nava
- a Musculoskeletal and Rheumatic Diseases Division , Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" , Mexico City , Mexico
| | - Francesca Oliviero
- b Rheumatology Unit, Department of Medicine - DIMED , University of Padova , Padova , Italy
| | - Alberto Gabriel López-Reyes
- a Musculoskeletal and Rheumatic Diseases Division , Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" , Mexico City , Mexico
| | - Karina Martínez-Flores
- a Musculoskeletal and Rheumatic Diseases Division , Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" , Mexico City , Mexico
| | - Daniela Garrido-Rodríguez
- c CIENI , Center for Research in Infectious Diseases, National Institute of Respiratory Diseases , Mexico City , Mexico
| | - Adriana Francisco-Balderas
- d Graduate Studies Department , Escuela Superior de Medicina, Instituto Politécnico Nacional. Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas , Mexico City , Mexico
| | - Yessica Zamudio-Cuevas
- a Musculoskeletal and Rheumatic Diseases Division , Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" , Mexico City , Mexico
| |
Collapse
|
40
|
Jaswal AP, Bandyopadhyay A. Re-examining osteoarthritis therapy from a developmental biologist's perspective. Biochem Pharmacol 2019; 165:17-23. [PMID: 30922620 DOI: 10.1016/j.bcp.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/25/2023]
Abstract
Osteoarthritis is the most prevalent musculoskeletal disorder and one for which there is no disease modifying therapy available at present. Our current understanding of the disease mechanism of osteoarthritis is limited owing to a lacuna of knowledge about the development and maintenance of articular cartilage that is affected during osteoarthritis. All current therapeutic strategies aim at countering inflammation which though mitigates pain but does not arrest the progressive degeneration of articular cartilage. During osteoarthritis, articular cartilage expresses markers for transient cartilage differentiation. Moreover, blocking transient cartilage differentiation is sufficient for halting the progression of experimental osteoarthritis. A developmental biology inspired approach that combines restoration of tissue microenvironment, supplementation with engineered cartilage and built in mechanism to prevent transient cartilage differentiation could be an avenue for developing a disease modifying therapy for osteoarthritis.
Collapse
Affiliation(s)
- Akrit Pran Jaswal
- Lab 10, Department of Biological Sciences and Bio-engineering, IIT, Kanpur, India.
| | | |
Collapse
|
41
|
Simvastatin promotes restoration of chondrocyte morphology and phenotype. Arch Biochem Biophys 2019; 665:1-11. [PMID: 30776329 DOI: 10.1016/j.abb.2019.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
In this study we examined whether the action of simvastatin affects re-differentiation of passaged chondrocytes and if so, whether this was mediated via changes in cholesterol or cholesterol intermediates. Bovine articular chondrocytes, of varying passage number, human knee chondrocytes and rat chondrosarcoma chondrocytes were treated with simvastatin and examined for changes in mRNA and protein expression of markers of the chondrocyte phenotype as well as changes in cell shape, proliferation and proteoglycan production. In all three models, while still in monolayer culture, simvastatin treatment alone promoted changes in phenotype and morphology indicative of re-differentiation most prominent being an increase in SOX9 mRNA and protein expression. In passaged bovine chondrocytes, simvastatin stimulated the expression of SOX9, ACAN, BMP2 and inhibited the expression of COL1 and α-smooth muscle actin. Co-treatment of chondrocytes with simvastatin plus exogenous cholesterol-conditions that had previously reversed the inhibition on CD44 shedding, did not alter the effects of simvastatin on re-differentiation. However, the co-treatment of chondrocytes with simvastatin together with other pathway intermediates, mevalonate, geranylgeranylpyrophosphate and to a lesser extent, farnesylpyrophosphate, blocked the pro-differentiation effects of simvastatin. Treatment with simvastatin stimulated expression of SOX9 and COL2a and enhanced SOX9 protein in human OA chondrocytes. The co-treatment of OA chondrocytes with mevalonate or geranylgeranylpyrophosphate, but not cholesterol, blocked the simvastatin effects. These results lead us to conclude that the blocking of critical protein prenylation events is required for the positive effects of simvastatin on the re-differentiation of chondrocytes.
Collapse
|
42
|
Steinberg J, Brooks RA, Southam L, Bhatnagar S, Roumeliotis TI, Hatzikotoulas K, Zengini E, Wilkinson JM, Choudhary JS, McCaskie AW, Zeggini E. Widespread epigenomic, transcriptomic and proteomic differences between hip osteophytic and articular chondrocytes in osteoarthritis. Rheumatology (Oxford) 2018; 57:1481-1489. [PMID: 29741735 PMCID: PMC6055583 DOI: 10.1093/rheumatology/key101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. Methods We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Results Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. Conclusion We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.
Collapse
Affiliation(s)
- Julia Steinberg
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.,Cancer Research Division, Cancer Council NSW, Sydney, NSW, Australia
| | - Roger A Brooks
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sahir Bhatnagar
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | | | | | - Eleni Zengini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens, Greece
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Andrew W McCaskie
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| |
Collapse
|
43
|
Aki T, Hashimoto K, Ogasawara M, Itoi E. A whole-genome transcriptome analysis of articular chondrocytes in secondary osteoarthritis of the hip. PLoS One 2018; 13:e0199734. [PMID: 29944724 PMCID: PMC6019400 DOI: 10.1371/journal.pone.0199734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/13/2018] [Indexed: 02/03/2023] Open
Abstract
Objective To date, exhaustive gene expression analyses of chondrocytes in hip osteoarthritis (OA) have yielded specific gene expression patterns. No study has reported on the exhaustive transcriptome of secondary hip OA based on acetabular dysplasia in a Japanese population, while previous reports have focused on primary or idiopathic hip OA in Caucasian populations. This study aims to search for specific gene expression patterns of secondary hip OA chondrocytes by transcriptome analysis. Design Human articular cartilage was obtained from femoral heads following hemiarthroplasty for femoral neck fracture (N = 8; non-OA) and total hip arthroplasty for secondary hip OA (N = 12). Total RNA was extracted from the articular cartilage and submitted for microarray analysis. The obtained data were used to perform gene expression analysis, GO enrichment analysis and pathway analysis and were compared with data from primary hip OA in Caucasian populations in the literature. Results We identified 888 upregulated (fold change: FC ≥ 2) and 732 downregulated (FC ≤ 0.5) genes in hip OA versus non-OA chondrocytes, respectively. Only 10% of upregulated genes were common between the secondary and primary OA. The newly found genes prominently overexpressed in the secondary hip OA chondrocytes were DPT, IGFBP7, and KLF2. Pathway analysis revealed extracellular matrix (ECM)-receptor interaction as an OA-related pathway, which was similar to previous reports in primary hip OA. Conclusions This is the first study to report the genome-wide transcriptome of secondary hip OA chondrocytes and demonstrates new potential OA-related genes. Gene expression patterns were different between secondary and primary hip OA, although the results of pathway and functional analysis were similar.
Collapse
Affiliation(s)
- Takashi Aki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Masanori Ogasawara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
44
|
Li A, Wei Y, Hung C, Vunjak-Novakovic G. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials 2018; 173:47-57. [PMID: 29758546 DOI: 10.1016/j.biomaterials.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix.
Collapse
Affiliation(s)
- Ang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yiyong Wei
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Khan MI, Su YK, Zou J, Yang LW, Chou RH, Yu C. S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One 2018; 13:e0190545. [PMID: 29444082 PMCID: PMC5812564 DOI: 10.1371/journal.pone.0190545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Ca2+-binding human S100A1 protein is a type of S100 protein. S100A1 is a significant mediator during inflammation when Ca2+ binds to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) correspond to 5 domains: the cytoplasmic, transmembrane, C2, C1, and V domains. The V domain of RAGE is one of the most important target proteins for S100A1. It binds to the hydrophobic surface and triggers signaling transduction cascades that induce cell growth, cell proliferation, and tumorigenesis. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction between S100A1 and the RAGE V domain. We found that S100B could interact with S100A1 via NMR 1H-15N HSQC titrations. We used the HADDOCK program to generate the following two binary complexes based on the NMR titration results: S100A1-RAGE V domain and S100A1-S100B. After overlapping these two complex structures, we found that S100B plays a crucial role in blocking the interaction site between RAGE V domain and S100A1. A cell proliferation assay WST-1 also supported our results. This report could potentially be useful for new protein development for cancer treatment.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Yu-Kai Su
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Jinhao Zou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Physics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
46
|
Hsia AW, Emami AJ, Tarke FD, Cunningham HC, Tjandra PM, Wong A, Christiansen BA, Collette NM. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res 2018; 36:699-710. [PMID: 29058776 PMCID: PMC5877458 DOI: 10.1002/jor.23779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
Osteophytes are a typical radiographic finding during osteoarthritis (OA), but the mechanisms leading to their formation are not well known. Comparatively, fracture calluses have been studied extensively; therefore, drawing comparisons between osteophytes and fracture calluses may lead to a deeper understanding of osteophyte formation. In this study, we compared the time courses of osteophyte and fracture callus formation, and investigated mechanisms contributing to development of these structure. Additionally, we investigated the effect of mechanical unloading on the formation of both fracture calluses and osteophytes. Mice underwent either transverse femoral fracture or non-invasive anterior cruciate ligament rupture. Fracture callus and osteophyte size and ossification were evaluated after 3, 5, 7, 14, 21, or 28 days. Additional mice were subjected to hindlimb unloading after injury for 3, 7, or 14 days. Protease activity and gene expression profiles after injury were evaluated after 3 or 7 days of normal ambulation or hindlimb unloading using in vivo fluorescence reflectance imaging (FRI) and quantitative PCR. We found that fracture callus and osteophyte growth achieved similar developmental milestones, but fracture calluses formed and ossified at earlier time points. Hindlimb unloading ultimately led to a threefold decrease in chondro/osteophyte area, and a twofold decrease in fracture callus area. Unloading was also associated with decreased inflammation and protease activity in injured limbs detected with FRI, particularly following ACL rupture. qPCR analysis revealed disparate cellular responses in fractured femurs and injured joints, suggesting that fracture calluses and osteophytes may form via different inflammatory, anabolic, and catabolic pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:699-710, 2018.
Collapse
Affiliation(s)
- Allison W. Hsia
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Armaun J. Emami
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Franklin D. Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Hailey C. Cunningham
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Priscilla M. Tjandra
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Blaine A. Christiansen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Nicole M. Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| |
Collapse
|
47
|
Chan DD, Li J, Luo W, Predescu DN, Cole BJ, Plaas A. Pirfenidone reduces subchondral bone loss and fibrosis after murine knee cartilage injury. J Orthop Res 2018; 36. [PMID: 28646530 PMCID: PMC5742076 DOI: 10.1002/jor.23635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pirfenidone is an anti-inflammatory and anti-fibrotic drug that has shown efficacy in lung and kidney fibrosis. Because inflammation and fibrosis have been linked to the progression of osteoarthritis, we investigated the effects of oral Pirfenidone in a mouse model of cartilage injury, which results in chronic inflammation and joint-wide fibrosis in mice that lack hyaluronan synthase 1 (Has1-/- ) in comparison to wild-type. Femoral cartilage was surgically injured in wild-type and Has1-/- mice, and Pirfenidone was administered in food starting after 3 days. At 4 weeks, Pirfenidone reduced the appearance, on micro-computed tomography, of pitting in subchondral bone at, and cortical bone surrounding, the site of cartilage injury. This corresponded with a reduction in fibrotic tissue deposits as observed with gross joint surface photography. Pirfenidone resulted in significant recovery of trabecular bone parameters affected by joint injury in Has1-/- mice, although the effect in wild-type was less pronounced. Pirfenidone also increased Safranin-O staining of growth plate cartilage after cartilage injury and sham operation in both genotypes. Taken together with the expression of selected extracellular matrix, inflammation, and fibrosis genes, these results indicate that Pirfenidone may confer chondrogenic and bone-protective effects, although the well-known anti-fibrotic effects of Pirfenidone may occur earlier in the wound-healing response than the time point examined in this study. Further investigations to identify the specific cell populations in the joint and signaling pathways that are responsive to Pirfenidone are warranted, as Pirfenidone and other anti-fibrotic drugs may encourage tissue repair and prevent progression of post-traumatic osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:365-376, 2018.
Collapse
Affiliation(s)
- Deva D. Chan
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,Corresponding author: Deva D. Chan, 110 Eighth St., BT 3141, Troy, NY 12180, Phone: (518) 276-4272
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| | - Wei Luo
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Brian J. Cole
- Midwest Orthopaedics at Rush, Rush University Medical Center,Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Anna Plaas
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center; 1653 West Congress Parkway, Chicago, Illinois, USA 60612,Department of Biochemistry, Rush University Medical Center
| |
Collapse
|
48
|
Ren J, Ma J, Zhang X, Aimaiti A, Saiyiti M, Chen Y, Cao L. Diagnostic value of combined serum marker changes and quantitative MRI evaluation of cartilage volume of tibial plateau in a surgically-induced osteoarthritis dog model. J Int Med Res 2017; 45:2023-2035. [PMID: 29125013 PMCID: PMC5805226 DOI: 10.1177/0300060517730452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective To evaluate the combined diagnostic value of two serum osteoarthritis (OA)
markers and quantitative magnetic resonance imaging (MRI) evaluation of the
cartilage volume of the tibial plateau in a canine model of experimental
OA. Methods A total of 18 male Beagle dogs were used in this longitudinal study. OA was
surgically induced via anterior cruciate ligament transection (ACLT) of the
right knee in 10 dogs. The remaining eight dogs formed the sham operation
control group and underwent the same procedure without ACLT. At various
times after surgery, enzyme-linked immunosorbent assay was used to measure
serum C-telopeptide of type II collagen (CTX-II) and type X collagen (ColX)
levels. Quantitative evaluation of the tibial plateau volume was undertaken
using MRI and ImageJ software. Results The serum CTX-II levels were significantly higher in the OA group at weeks 8,
12 and 16 after surgery, but not at week 4, compared with the control group.
The serum ColX levels in the OA group were significantly higher than in the
control group at weeks 8 and 12. The tibial plateau cartilage volumes in the
OA group were significantly lower than in the control group at weeks 8 and
16. Conclusion Serum CTX-II and ColX levels combined with quantitative MRI evaluation of the
tibial plateau cartilage volume in a canine model of OA demonstrated the
potential to detect and monitor OA progression.
Collapse
Affiliation(s)
- Jiangdong Ren
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jinsai Ma
- 3 Department of Orthopaedics, Changji Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, China
| | - Xiaogang Zhang
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abdusami Aimaiti
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitiming Saiyiti
- 2 Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Chen
- 4 Department of Pain Management, Changji Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, China
| | - Li Cao
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
49
|
Yazici Y, McAlindon TE, Fleischmann R, Gibofsky A, Lane NE, Kivitz AJ, Skrepnik N, Armas E, Swearingen CJ, DiFrancesco A, Tambiah JRS, Hood J, Hochberg MC. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage 2017; 25:1598-1606. [PMID: 28711582 DOI: 10.1016/j.joca.2017.07.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To assess the safety, pharmacokinetics, and exploratory efficacy of SM04690, a novel Wnt pathway inhibitor, as a potential disease modifying treatment for knee osteoarthritis (OA). DESIGN Subjects with Kellgren-Lawrence grade 2-3 knee OA were randomized in successive dose-escalation cohorts to receive a knee intra-articular (IA) injection with 0.03, 0.07, or 0.23 mg SM04690, or placebo (PBO) (4:1 ratio). Safety, pharmacokinetics, efficacy (WOMAC Total/Function/Pain, Pain VAS, Physician Global Assessment [MDGA], and OMERACT-OARSI Response), OA-related biomarker (P1NP, ß-CTX, and cartilage oligomeric matrix protein [COMP]), and radiographic/imaging data were collected at baseline and during 24-week follow-up. RESULTS 61 subjects (SM04690 n = 50; PBO n = 11) enrolled. Two dose limiting toxicities (DLTs), increased pain following injection and paroxysmal tachycardia (also the single serious AE), were reported in the 0.07 mg cohort. A total of 72 AEs were reported; Sixteen (occurring in eight subjects) were considered related to study medication. There were three discontinuations; one due to an AE (0.03 mg cohort). Bone marrow edema (BME) remained constant for most subjects. No doses were excluded from further study due to DLT criteria. Plasma levels of SM04690 were below the limit of detection at all time points. At Week 24, improvements from baseline were seen in all cohorts for the exploratory measures WOMAC Total, WOMAC Function, WOMAC Pain, MDGA, Pain VAS, and OMERACT-OARSI response. Joint space width (JSW) improvement was observed in the 0.07 mg cohort (P = 0.02 vs PBO). CONCLUSION SM04690 appeared safe and well tolerated, with no evidence of systemic exposure. Exploratory efficacy analyses suggested positive trends for measurements of OA pain, function and disease-modifying osteoarthritis drug (DMOAD) properties. CLINICALTRIALS. GOV REGISTRATION NCT02095548.
Collapse
Affiliation(s)
| | | | - R Fleischmann
- University of Texas Southwestern Medical Center, TX, USA
| | - A Gibofsky
- Hospital for Special Surgery-Weill Cornell Medicine, NY, USA
| | - N E Lane
- UC Davis Medical Center, CA, USA
| | - A J Kivitz
- Altoona Center for Clinical Research, PA, USA
| | | | - E Armas
- Well Pharma Medical Research, USA
| | | | | | | | | | - M C Hochberg
- University of Maryland School of Medicine, MD, USA
| |
Collapse
|
50
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|